'.) Check for updates

Received: 21 November 2023 | Accepted: 18 April 2024

DOI: 10.1111/acer.15346

ALCOHOL = J ..

RESEARCH ARTICLE CLINICAL & EXPERIMENTAL RESEARCH

The gut-brain axis in individuals with alcohol use disorder:
An exploratory study of associations among clinical symptoms,
brain morphometry, and the gut microbiome

Katherine A. Maki'® | Gwenyth R. Wallen! | ThomazF. S. Bastiaanssen? |
Li-Yueh Hsu® | Michael E. Valencia® | Vijay A. Ramchandani*® | Melanie L. Schwandt? |
Nancy Diazgranados® | JohnF.Cryan? | Reza Momenan® | Jennifer J. Barb!

MTranslational Biobehavioral and Health

Disparities Branch, National Institutes Abstract

cl\’/fl Hefltz S&cal Center, Bethesda, Background: Alcohol use disorder (AUD) is commonly associated with distressing psy-
aryland,

2APC Microbiome Ireland and Department chological symptoms. Pathologic changes associated with AUD have been described

of Anatomy & Neuroscience, University in both the gut microbiome and brain, but the mechanisms underlying gut-brain sign-

College Cork, Cork, Ireland . e e . . . . g
5 aling in individuals with AUD are unknown. This study examined associations among
Radiology and Imaging Sciences, National

Institutes of Health, Clinical Center, the gut microbiome, brain morphometry, and clinical symptoms in treatment-seeking

Bethesda, Maryland, USA individuals with AUD.
“National Institute on Alcohol Abuse and
Alcoholism, National Institutes of Health,
Bethesda, Maryland, USA ment for AUD in subjects who provided gut microbiome samples and had structural

Methods: We performed a secondary analysis of data collected during inpatient treat-

Clinical Neurolmaging Research Core, brain magnetic resonance imaging (MRI; n=16). Shotgun metagenomics sequencing
National Institute on Alcohol Abuse and

Alcoholism. National Institutes of Health was performed, and the morphometry of brain regions of interest was calculated.

Bethesda, Maryland, USA Clinical symptom severity was quantified using validated instruments. Gut-brain
Correspondence modules (GBMs) used to infer neuroactive signaling potential from the gut micro-
Katherine A. Maki, National Institutes of biome were generated in addition to microbiome features (e.g., alpha diversity and
Health, Building 10 Rm 2B10, 10 Center

Drive, Bethesda, MD 20814, USA. bacterial taxa abundance). Bivariate correlations were performed between MRI and
Email: katherine.maki@nih.gov clinical features, microbiome and clinical features, and MRI and microbiome features.

Funding information Results: Amygdala volume was significantly associated with alpha diversity and the

NIH Clinical Center, Grant/Award abundance of several bacteria including taxa classified to Blautia, Ruminococcus,
Number: 299CL999999 Bacteroides, and Phocaeicola. There were moderate associations between amygdala
volume and GBMs, including butyrate synthesis |, glutamate synthesis I, and GABA
synthesis | & II, but these relationships were not significant after false discovery rate
(FDR) correction. Other bacterial taxa with shared associations to MRI features and
clinical symptoms included Escherichia coli and Prevotella copri.

Conclusions: We identified gut microbiome features associated with MRI morpho-
metry and AUD-associated symptom severity. Given the small sample size and bi-

variate associations performed, these results require confirmation in larger samples

Reza Momenan and Jennifer J. Barb are co-senior authors.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.

© 2024 The Author(s). Alcohol, Clinical and Experimental Research published by Wiley Periodicals LLC on behalf of Research Society on Alcohol. This article
has been contributed to by U.S. Government employees and their work is in the public domain in the USA.

Alcohol Clin Exp Res. 2024;48:1261-1277. wileyonlinelibrary.com/journal/acer 1261


www.wileyonlinelibrary.com/journal/acer
mailto:
https://orcid.org/0000-0003-4578-960X
https://orcid.org/0000-0003-2474-2183
mailto:katherine.maki@nih.gov
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1111%2Facer.15346&domain=pdf&date_stamp=2024-06-22

OL

MAKI ET AL.

CLINICAL & EXPERIMENTAL RESEARCH

KEYWORDS

INTRODUCTION

The misuse of alcohol is a global public health concern that
compromises both individual and societal well-being, result-
ing in an estimated three million deaths annually (World Health
Organization, 2019). Alcohol use disorder (AUD) is a highly prev-
alent disease, and approximately one-third of the United States
adult population has met the Diagnostic and Statistical Manual
of Mental Disorders-5 (DSM-5) criteria for AUD at some point in
their lives (Witkiewitz et al., 2019). AUD is considered to be mainly
a disorder of the brain reward circuit where alterations in neu-
rotransmitter systems such as dopamine, serotonin and glutamate,
among others, are associated with the positive and negative rein-
forcement processes leading to craving for alcohol and increased
dependence over time (Gilpin & Koob, 2008).

Chronic heavy alcohol use and AUD are associated with many
distressing symptoms including symptoms of anxiety and de-
pression, sleep disruption, and altered stress handling (Wallen
et al., 2019). Altered basal plasma cortisol levels, often seen in pa-
tients with AUD, are associated with similar symptoms including
sleep changes, symptoms of depression and anxiety, as well as im-
mune upregulation and inflammation (Fiksdal et al., 2019; Leclercq,
De Saeger, et al., 2014). Alcohol-induced inflammation and neuro-
endocrine dysregulation may have multifactorial implications for
patients with AUD including exacerbation of common symptoms
(i.e., craving, withdrawal, anxiety, depression, and sleep distur-
bance), increased risk of relapse, and compounded risk for chronic
disease (Rohleder, 2019). Gastrointestinal manifestations are also
common complaints in patients with AUD (Bishehsari et al., 2017),
which are likely associated with implications of chronic alcohol
consumption including alteration of the gastrointestinal environ-
ment and the gut microbiome (Bishehsari et al., 2017; Leclercq,
Matamoros, et al., 2014).

The human gut microbiome is defined as the commensal gut
bacteria that live within and coexist with humans (and their genes).
Gut microbiome bacteria perform vital physiologic functions
such as immune regulation, nutrient metabolism, and produc-
tion of signaling metabolites like short-chain fatty acids (Belkaid
& Harrison, 2017; Silva et al., 2020). Heavy alcohol consumption
induces profound changes in the gastrointestinal environment in-
cluding lower pH of feces and increased gut permeability (Engen
etal., 2015; Leclercqetal., 2012; Leclercq, Matamoros, et al., 2014)
that is associated with the translocation of microbial byproducts
and mediators from the gastrointestinal environment into the in-

testinal lumen and systemic circulation (Ferro et al., 2020). Heavy

and controls to provide meaningful clinical inferences. Nevertheless, these results will
inform targeted future research on the role of the gut microbiome in gut-brain com-

munication and how signaling may be altered in patients with AUD.

addiction, alcohol use disorder, gastrointestinal microbiome, gut-brain axis, neuroimaging

alcohol use and AUD have been associated with pathologic changes
in the gut microbiome including decreased commensal bacteria
(i.e. Lactobacillus, Bifidobacterium), reduced microbial diversity,
and increased inflammatory bacteria like Proteobacteria (Ames
et al.,, 2020; Leclercq, Matamoros, et al., 2014). Furthermore,
inflammatory pathways were more intensively activated by lipo-
polysaccharide and peptidoglycan exposure in cells from subjects
with AUD versus nondrinking controls, suggesting chronic alcohol
exposure primes subjects for microbiome-induced inflammation
(Leclercq, De Saeger, et al., 2014).

Interoceptive signaling of gut microbiome-associated mediators
and metabolites to the brain, known as microbiota-gut-brain axis
signaling, is hypothesized to occur through a number of mechanisms,
including microbiome-derived metabolites, microbiome-immune
crosstalk, and afferent gastrointestinal signaling mediated by the
vagus nerve and enteric nervous system (Bassett et al., 2019; Cryan
etal.,, 2019; Wang et al., 2018). Recent research also suggests bacte-
rial communities of the gut microbiome can influence brain function
and behavioral phenotype and may be associated with the patho-
genesis of psychiatric disorders such as AUD (Carbia et al., 2021;
Dinan & Cryan, 2017). Preclinical research has also shown that the
gut microbiome can influence the key neural pathways implicated
in AUD clinical manifestations and HPA axis alterations. For exam-
ple, germ-free mice have marked changes in brain regions associated
with anxiety- and depressive-like symptoms including amygdalar
(Stilling et al., 2015), hippocampal (Clarke et al., 2013), and cortical
(Hoban et al., 2016) gene expression in addition to an exaggerated
HPA axis response corresponding to changes in anxiety, cognitive,
and social behaviors (Luczynski et al., 2016). Although there is com-
pelling evidence that sustained alcohol use induces inflammatory
and stress-signaling mechanisms associated with symptom burden
in AUD, the mechanisms and links to the known altered stress re-
sponses in patients with AUD are still being explored.

AUD is a heterogeneous condition that is incredibly difficult to
manage, and pharmacological treatment modalities have limited
efficacy (Heilig et al., 2019; Volkow et al., 2015). There is a criti-
cal need to identify alternative targets that can be studied in the
context of AUD. In 2019, Valles-Colomer and colleagues devel-
oped a database of gut-brain signaling pathways, called gut-brain
modules (GBMs), that are informed by the literature and calculated
from shotgun metagenomics sequencing data (Valles-Colomer
et al., 2019). GBMs describe the synthesis and degradation of neu-
roactive compounds by the gut microbiota and therefore allow for
the assessment of specific processes relevant to gut-brain com-
munication from sets or pathways of genes rather than singular
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genes. This enables more precise and reliable interrogation of gut-
brain communication versus interrogating what is achievable with
single genes. Understanding microbially derived features and their
associated signaling processes hold promise for nonpharmacologic
interventions, but concrete mechanisms linking the microbiome
to neurologic outcomes (brain morphometry or symptom sever-
ity) have yet to be determined in patients with AUD. Therefore,
research focused on investigating relationships between bacte-
rial and functional features specific to the gut microbiome, brain
morphometry from structural magnetic resonance imaging (MRI),
and clinical symptoms may provide the necessary preliminary in-
formation to inform future targeted mechanistic studies aimed at
addressing this knowledge gap. The objective of this exploratory
secondary analysis study was to examine associations between
the gut microbiome, structural MRl morphometry, and severity of
AUD-associated clinical symptoms in treatment-seeking patients
with AUD.

METHODS
Study overview

This is a secondary analysis that incorporated shotgun sequencing
of previously collected gut microbiome samples from individuals
with AUD during an inpatient treatment program at the National
Institutes of Health Clinical Center. The primary work from this
study included a longitudinal experimental design using 16S rRNA
sequencing of oral and gut microbiome samples from patients un-
dergoing inpatient treatment for AUD (Ames et al., 2020; Barb
et al., 2022). The original study and this secondary analysis were
approved by the National Institutes of Health Institutional Review
Board (NCT02911077) and primary data collection was conducted
over approximately 1year (2016-2017). Eligibility and clinical
baseline measures were established via the National Institutes
of Health-approved National Institute on Alcohol Abuse and
Alcoholism natural history and research protocol (NCT02231840).
This secondary analysis includes previously collected clinical data
and structural MRI imaging measures that were analyzed with
stored fecal samples that underwent shotgun metagenomics se-
quencing to explore relationships between the gut microbiome,
morphometry of brain regions associated with the HPA-axis, and
clinical phenotype variables in treatment-seeking patients with
AUD (Figure 1). Please see Ames et al. (2020), for full screening
procedures, inclusion and exclusion criteria, and the primary study

procedures.
Study population
A total of 16 treatment-seeking individuals with AUD enrolled at the

NIH Clinical Center inpatient treatment program who had gut mi-
crobiome samples collected and structural MRI imaging performed
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during the four-week inpatient treatment period were studied
(Figure 1A).

Clinical measures

Clinical measures encompassing alcohol use, intake history, and
subjective symptoms of anxiety, depression, sleep quality, craving
for alcohol, and withdrawal were collected upon consent into the
natural history protocol (See Table S1 for full description and scor-
ing of alcohol-associated and clinical measures). To quantify drink-
ing patterns and characterize alcohol dependence severity for study
population description, the Alcohol Dependence Scale, Alcohol
Use Disorder Identification Test, Obsessive Compulsive Drinking
Scale, Alcohol Timeline Followback (TLFB), and Lifetime Drinking
History were collected at baseline during the first-week postad-
mission. The Bristol stool form scale was recorded to evaluate the
consistency of the fecal sample collected for microbiome analysis.
Individuals with current mood and/or anxiety disorders were deter-
mined using the Structured Clinical Interview for DSM-IV or DSM-
5. Participants also completed instruments quantifying symptoms
of depression and anxiety (the Brief Scale for Anxiety [BSA] and
Montgomery Asberg Depression Rating Scale [MADRS] subscales of
the Comprehensive Psychopathological Rating Scale questionnaire,
respectively), subjective sleep quality (Pittsburg Sleep Quality Index
[PSQI]), craving for alcohol (Penn Alcohol Craving Scale [PACS]), and
withdrawal from alcohol (Clinical Institute Withdrawal Assessment
[CIWA]). The PSQI was administered on days 2 and 28 of admission,
PACS at 7-day intervals starting from the fifth day of admission, and
BSA/MADRS also at 7-day intervals starting from the second day of
admission. Scores from the PSQI, PACS, BSA, and MADRS collected
at the timepoint closest to the date of the structural MRI and micro-
biome sample were used for this cross-sectional analysis (Figure 1A).
The daily maximum CIWA score from admission days 1-4 was col-
lected for each patient and averaged for the quantification of alcohol
withdrawal severity.

Nutritional dietary intake during inpatient treatment

Nutritional intake during inpatient treatment was monitored using
food tickets at the NIH Clinical Center. Detailed procedures for
dietary data collection and processing have been described previ-
ously (Ames et al., 2020). Briefly, food tickets accompanied each
meal that presented the food components provided, and the per-
cent of each component consumed were recorded by the subject
and returned to the Clinical Center nutrition department. Food in-
formation was coded and uploaded to the Nutrition Data System
for Research software (version 2016/17, Nutrition Coordinating
Center, University of Minnesota). The nutritional intake data
analyzed in the NDSR software was used to calculate the Health
Eating Index (HEI-2015) for each patient (Reedy et al., 2018). Food
tickets were analyzed on the day of and the day before the fecal
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FIGURE 1 Study overview. (A) Overview of the study design. Cross sectional study measures collected from patients with AUD admitted
to treatment program at the NIH Clinical Center. The fecal sample that was collected closest to the date the structural MRI was completed
underwent shotgun metagenomics sequencing. (B) Schema of three comparison analyses and workflows of cross-sectional investigations

of clinical and gut microbiome data. Brain regions of interest compared with clinical symptom characteristics/measures (orange bubble).
Brain regions of interest compared with alpha diversity metrics, abundant taxonomic features, and gut-brain modules (purple bubble). Gut
microbiome features compared with clinical symptom characteristics (pink bubble). Created with BioRender.com.

sample was collected for gut microbiome analysis, and nutritional
information for those 2days was averaged. Total kcal daily intake
and average carbohydrate, protein, fat, and dietary fiber intake
are reported.

Magnetic resonance image acquisition and processing

A whole brain structural MRI scan was obtained for volumetric
and morphological analyses in this cohort of patients once dur-
ing inpatient admission. MRI data were acquired on 3 Tesla
Siemens Prisma (Siemens Healthineers, Erlangen, Germany; n=9)
and 3 Tesla Philips Achieva (Philips Medical Systems, Best, The
Netherlands; n=7) scanners. A spin echo sequence (TR 600ms,
TE 8.9ms, flip angle 75° NEX 1, acquisition matrix 320x 224,
slice thickness 4mm, pixel spacing 0.72x0.72mm) was used in

the Siemens scanner, while a gradient echo sequence (TR 8.2ms,
TE 3.7 ms, flip angle 8°, NEX 1, acquisition matrix 240 x 240, slice
thickness 1 mm, pixel spacing 0.94x0.94mm) was used in the
Philips scanner to acquire 3D sagittal T1-weighted anatomical im-
ages. All MR imaging was performed at the National Institutes of
Health Clinical Center.

For cortical reconstruction and volumetric segmentation of the
T1 brain MR images, we used FreeSurfer (http://surfer.nmr.mgh.
harvard.edu) image analysis suite (v7.2) to obtain regional measures
of cortical volume, surface area, and thickness. The image process-
ing pipeline in FreeSurfer included motion correction and averag-
ing of T1-weighted images, removal of nonbrain tissue, automated
Talairach transformation, segmentation of the subcortical white
matter and deep gray matter structures, intensity normalization,
tessellation of the gray matter white matter boundary, automated
topology correction, and surface deformation. Expanded technical
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details of the FreeSurfer image processing procedures can be found
in (Dale et al., 1999; Desikan et al., 2006; Fischl & Dale, 2000). After
the FreeSurfer pipeline processing, parcellated morphological vol-
ume measures of the following bilateral components were quanti-
fied: amygdala, anterior cingulate cortex (ACC), hippocampus, and
insula; as well as pons, brain volume (without ventricles), and brain
stem for normalization procedures. Brain regions of interest (ROI)
were prospectively selected due to their association with HPA-axis
activity (Critchley, 2005; Quevedo et al., 2017), and well-described
morphometric modulation associated with chronic alcohol use and
AUD (Grace et al., 2021; Momenan et al., 2012; Yang et al., 2016).
For surface area and thickness measures, the following bilateral
composite regions of interest, as defined in Pennington et al. (2015),
were calculated: (1) ACC includes rostral anterior cingulate and cau-
dal anterior cingulate regions, and (2) insula. In addition, normalized
volume measures were calculated by dividing each regional volume
measure by the brain volume (without ventricles), and normalized
surface area measures were calculated by dividing the surface area
of each bilateral composite region with the white matter surface

area in each hemisphere.

Fecal sample collection and processing

The collection, processing, and storage procedures of fecal samples
for gut microbiome analysis have previously been described in detail
(Ames et al., 2020). Briefly, whole stool was collected using sterile
conditions from each participant upon deposition and was imme-
diately frozen at-20°C. Within up to 3days, samples were thawed,
diluted with 1:3 phosphate-buffered saline solution, and homoge-
nized. Aliquots were stored in a 2mL microcentrifuge safe-lock tub
at -80°C. Frozen aliquoted fecal samples (-80°C) from stool homog-
enization were used for shotgun metagenomics sequencing in the
current study. The original study included up to 10 stool samples
from each patient, but the current secondary analysis included one
sample from each participant within the week two timeframe of
inpatient treatment in which the sample closest to the date of the
structural MRI was reprocessed for shotgun sequencing (approxi-

mately days 8-14 of inpatient treatment).

Fecal shotgun metagenomics sample
processing methods

DNA was extracted from approximately 50mg of stool samples
in two stages including an initial homogenization in Lysis Matrix E
tubes (MP Biomedicals) with a Precellys 24 Tissue Homogenizer
(Bertin Instruments) and subsequent processing of the resultant su-
pernatant using the MagAttract PowerMicrobiome DNA/RNA EP
kit (Qiagen) on an Eppendorf automated liquid handling system as
per the manufacturer's instructions. Isolated DNA was then checked
for concentration and quality on a BioTek Synergy HTX plate reader.
Metagenomic libraries were prepared using the Nextera DNA Flex
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Library Prep Kit (lllumina) per the manufacturer's instructions with
100ng of DNA as sample input. The concentration of the resultant
libraries was quantified using the Qubit dsDNA HS assay on a Qubit
2.0 fluorometer (Life Technologies). Library size and quality were
assessed via the Agilent High Sensitivity D5000 ScreenTape on an
Agilent 4200 Tapestation. Metagenomic libraries were normalized to
an equimolar concentration and pooled. The pool was diluted to 1.8
pM, mixed with a 1% PhiX control library, and sequenced via a paired-
end run (75bpx75bp) using a NextSeq 500/550 High Output v2
150-cycle Reagent Cartridge on a NextSeq 500 sequencer (lllumina).

Shotgun metagenomics bioinformatics processing
FASTQ file processing

This work utilized the computational resources of the NIH HPC
Biowulf cluster (http://hpc.nih.gov). A total of 16 paired-end raw
FASTQ files were submitted for quality control and process-
ing. Shotgun sequencing analysis was conducted using the ‘Just a
Microbiology System’ 1.7.9 (JAMS) package which can be found on
GitHub (https://github.com/johnmcculloch/JAMS_BW) (McCulloch
et al., 2023). All FASTQ files were submitted to FastQC (v0.11.9,
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) for
quality control checking and further submitted for quality trimming
using Trimmomatic v0.36 (Bolger et al., 2014) with the following
parameters: leading=15, trailing=15, slidingwindow=4:18, head-
crop=0, minlen=36. Shotgun metagenomics sequence reads were
aligned against the human genome (human genome build: GRCh38.
p14) with Bowtie2 v2.3.2 (Langmead & Salzberg, 2012) to remove
host contamination. All unaligned reads were then assembled using
MEGAHIT v1.2.9 (Li et al., 2015) within the JAMSalpha package.

Microbiome characterization

Taxonomy classification of the contigs was carried out using Kraken2
(Wood et al., 2019) in JAMSalpha, and only contigs greater than 500
base pairs were considered for taxonomic classification. A custom
90 Gigabyte Kraken2 database was built January 2022 in JAMS
from draft and complete genomes of all bacteria, archaea, fungi, vi-
ruses, and protozoa available in the NCBI GenBank (as of January
2022) using the JAMSbuildk2db tool of the JAMS package (database
name/version: JAMSdb202201_1.6.6_20220114). Taxonomy was
expressed as the last known taxon (LKT), i.e., the classification with
the lowest unambiguous taxonomic level. Alpha diversity indices
(Inverse Simpson, Shannon Diversity Index, and Chaol) were com-
puted on the LKT parts per million (PPM) count table generated using
the minimal filtering setting in JAMSbeta v1.8.3, which required
genome completeness to be at least 5% in at least 5% of samples
(McCulloch et al., 2023). Higher-order taxonomic summaries were
calculated by collapsing the remaining LKT features after the mini-
mal filtering setting at the levels of phylum and genus, respectively.
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Abundance filtering and transformation

The top 100 most counted or “highly abundant” taxa were selected
for downstream microbiome-associated bivariate analyses. The min-
imal filtering setting in JAMSbeta v1.8.3, i.e., genome completeness
required to be at least 5% in at least 5% of samples, was also used
to generate the bacterial feature table, and the 100 LKT with the
greatest average part per million counts were extracted as the highly
abundant taxa. The centered log ratio with parameterization (CLRp)
transformation was computed on the highly abundant LKT feature
table to account for compositionality and allow for downstream
parametric testing (Erb, 2023). Scripts to perform CLRp transforma-
tion are publicly available for download from GitHub (https://github.

com/thomazbastiaanssen/deleuze).

Gut-Brain module analysis workflow

To support the clinical interpretation of microbiome-associated
feature data, GBMs were computed from metagenomic sequenc-
ing data. GBMs represent functional pathways curated from the
literature that have been reported to take place in the gut micro-
biome and are involved in microbiome-gut-brain communication
(Valles-Colomer et al., 2019). Each GBM corresponds to a single
neuroactive compound production or degradation process. To
compute GBMs, bacterial functional potential identifiers were ob-
tained using the NIH Nephele platform from the National Institute
of Allergy and Infectious Diseases Office of Cyber Infrastructure
and Computational Biology, a microbiome analysis cloud-based
platform for whole genome sequencing (https://nephele.niaid.nih.
gov) (Weber et al., 2018). Specifically, the whole genome sequenc-
ing bioBakery workflow (Beghini et al., 2021) was run on Nephele
to construct a gene function relative abundance table output from
HUMANN v3.0.0.alpha.3 (Franzosa et al., 2018). From this gene func-
tion relative abundance table, the genefamilies_relab.tsv file was
converted to Kyoto Encyclopedia of Genes and Genomes (KEGG)
ids using the following command: humann_regroup_table with the
-g flag as uniref90_ko. The KEGG id abundance table was then split
using the humann_split_stratified_table command within HUMANnN
to be used in the GBM workflow. KEGG pathways used to build
GBMs were downloaded from https://raeslab.org/software/gbms.
html. The KEGG relative abundance feature table data was mapped
to GBMs using Omixer-rpmR; a reference pathway mapping tool
for metabolic module profiling of microbiome samples modified for
the R programming environment (https://github.com/omixer/omixe
r-rpmR). The CLRp transformation was also performed on the GBM
feature table for downstream statistical analysis.

Statistical analyses

All statistical analyses were conducted using JMP™ v16.0 (SAS
Headquarters, Cary, NC) and the R programming environment.

Means and standard deviations were calculated to describe group
values of features across the study cohort. Because of the small
and heterogenous sample, along with the exploratory nature of this
work, bivariate comparisons were performed using Pearson corre-
lations between alcohol-associated clinical symptom severity and
brain ROl morphometry, microbiome-associated features and brain
ROI morphometry, and microbiome-associated features and alcohol-
associated clinical symptom severity, respectively (Figure 1B).
Alcohol-associated clinical symptoms that were used in bivariate
analyses included withdrawal from alcohol, sleep quality, depression,
anxiety, and craving for alcohol. Bivariate relationships between
GBMs and the top 100 most abundant gut microbiome taxa were
also calculated to identify taxa-GBM correlation pairs. Descriptive
statistics are presented for other relevant demographic information,
clinical and nutrition data, drinking patterns, and alcohol depend-
ence severity data representing the study cohort in Table 1.
Multiple comparisons correction was applied to statistical com-
parisons using the Benjamini-Hochberg post hoc procedure (False
Discovery Rate [FDR]) when testing associations between brain
ROIs and clinical symptom severity, brain ROIs and microbiome
features, and microbiome features and clinical symptom severity,
respectively. As this is an exploratory study intended to produce
preliminary data for future hypotheses, a g-value of 0.2 (i.e., an
FDR corrected p-value <20%) was used as a threshold for statistical
significance in the FDR corrected p values. Data are expressed as

mean +standard deviation.

RESULTS

Clinical, MRI, and microbiome characteristics of study
population

A total of 16 participants had structural MRI, gut microbiome sam-
ples, and clinical phenotype data, and therefore were included in
this secondary analysis study. Participants were 45+ 11.6years of
age with a BMI of 23.89+2.48 and were mostly white (56.25%)
males (62.5%) who were current smokers (62.5%; see Table 1A for
demographic and clinical averages of the study cohort). Participants
reported an average of 18.44+12.12 heavy drinking years and an
average of 17.16 + 9.78 drinks per day in the 90days preceding inpa-
tient admission. The HEI for this inpatient cohort was 61.96+10.52,
and the total dietary fiber intake was 27.28 + 13.70g.

Mean values of brain ROI for volume (normalized to total brain
volume without ventricles), surface area (normalized to white matter
surface area), and cortical thickness values are shownin Table 1B. The
mean gut microbiome sequencing depth was 4.44+0.53 Gigabase
pairs before trimming, and 4.16+0.50Gigabase pairs after trim-
ming, yielding an average assembly rate of 87.4+5.1% (see Table S2
for all FASTQ read statistics). A total of 9705 taxa were annotated
in the gut microbiome samples after filtering in JAMS. The aver-
age Shannon diversity index of the patient cohort was 3.67+0.40
(see Figure S1 for all alpha diversity metrics calculated), and across
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TABLE 1 Study participant information. TABLE 1 (Continued)
A. Demographics, clinical characteristics, and alcohol intake A. Demographics, clinical characteristics, and alcohol intake
profiles profiles
Mean+SD or Mean + SD or
Characteristic,n=16 N (%) Characteristic,n=16 N (%)
Age (years) 45+11.61 Total dietary fiber (g) 27.28+13.70
BMI 23.87+2.47 B. Morphometry of brain regions of interest from structural MRI
Sex K .
Brain region
0,

Male 10(62.5%) of interest Volume Surface area Cortical

Female 6 (37.5%) (n=16) (normalized %) (normalized %) thickness (mm)
Race ACC 0.752+0.104  3.451+0.464 2.522+0.176

White (non-Hispanic) 9 (56.25%) Amygdala 0.288+0.027 N/A N/A

Black (non-Hispanic) 5(31.25%) Hippocampus 0.735+0.080  N/A N/A

Black (Indigenous/non-Hispanic) 1(6.25%) Insula 1.200+0.082 2.879+0.114 2.879+0.114

Unknown Hispanics 1(6.25%) Note: (A) Demographics, clinical characteristics, symptom, and alcohol
Smoking status intake data in the study cohort. ?Maximum CIWA score over the

Smoker 10 (62.5%) first 4days at the start of treatment. (B) Volume, surface area, and

cortical thickness values of brain regions of interest in the study

Non-smoker 5(31.25%) cohort. Normalized volume measures were calculated by dividing each
Missing 1(6.25%) regional volume measure by the brain volume (without ventricles),
Mean + SD and normalized surface area measures were calculated by dividing the
surface area of each bilateral composite region with the white matter
BMI 23.89+2.48 surface area in each hemisphere.
N (%) Abbreviations: ACC, anterior cingulate cortex; ADS, Alcohol
Mood disorder Dependence Scale; AUDIT, Alcohol Use Disorders Identification Test;
Yes 5 (31.25%) BMI‘, body r.nass index; BSA, Brief Scale for Anxiet.y; CIWA, Clinical
Institute Withdrawal Assessment; HEI, Health Eating Index; kcal,
Anxiety disorder kilocalorie; MADRS, Montgomery Asberg Depression Rating Scale;
Yes 5(31.25%) OCDS, Obsessive Compulsive Drinking Scale; PACS, Penn Alcohol
Craving Scale; PSQI, Pittsburg Sleep Quality Index.
Mean +SD

Subjective symptoms

BSA 6.56+5.05 all 9705 taxa, Firmicutes predominated gut microbiome samples
MADRS 8.13+4.38 (81.72+11.68%), followed by Actinobacteria (8.32+10.51%) and
PSQI Global Score 12.21+3.89 Bacteroidetes (5.43 +6.75%). This distribution at the phylum level
CIWA? 5814293 was similar when the top 100 most abundant taxa (used for down-
PACS 10.3147.28 stream analysis) were averaged, with Firmicutes 83.63+11.72%,

. Actinobacteria (7.96 +10.53%) and Bacteroidetes (5.12 +6.71%) en-
Bristol Stool Scale 3.75+1.39

compassing the most abundant phyla (Figure 2A). The greatest num-
Drinking measures - X
ber of the abundant genera originated from the Lachnospiraceae

Average drinks per day 171619.78 family (n=42), and the taxonomic lineage of the top 100 genera
Number of heavy drinking days 76.40+22.77 is illustrated in Figure 2B. Of these genera, Blautia had the high-
Number of heavy drinking years 18.44+12.12 est relative abundance (26.15+8.61%), followed by Ruminococcus
ADS Score 21.60+4.21 (11.22+9.47%) and Roseburia (6.03+5.96%; Figure S2). Notably,
AUDIT total 30.27+4.85 there was a large degree of variation across individual participants
OCDS total 19.60+9.45 in the PPM abundance quantified of these top 100 taxa (Figure S3).
Nutrition A total of 4489 KEGG orthologs were extracted from the bio-
Total HEI-2015 61.96+10.52 Bakery HUMANNS functional analysis, and 38 GBMs were detected
Energy (kcal) 2622.28+982.08 after running the GBM workflow (Figure S4). The top 4 most abun-
Uatel el e e 316.944128.99 dant GBMs were the ClpB (ATP-dependent chaperone protein),
Total protein (g) 120.64+30.52 Glutamate synthesis |, S-Adenosylmethionine (SAM) synthesis, and
Glutamate synthesis Il pathways with 12.42%, 12.22%, 11.65%,

Total fat (g) 102.48+55.47
and 10.44% average abundance (of total GBMs identified), respec-
tively (Figure 2C). When each GBM was correlated with the top 100
(Continues) taxa, there were 44 significant GBM-taxa pairs that consisted of 25
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FIGURE 2 Gut microbiome community characteristics of study cohort. (A) Average relative abundance of the top 100 most abundant gut
microbiome taxa at the phylum level. (B) Sankey diagram displaying the composition and lineage at the phylum, family, and genus level for
the top 100 taxa with the total count at each level. (C) Average representation of GBMs identified (% of total) from gut microbiome samples.
(D) Pearson correlation coefficient (r) dot plot representing relationships between GBMs and the top 100 taxa in gut microbiome samples.
Before FDR correction, a total of 261 pairs of taxa and GBM associations were found to be significant, which consisted of 76 unique taxa
and 38 GBMs (Table S3). Several Roseburia species were negatively associated with 17-beta-Estradiol degradation, while the Glutamate
degradation Il pathway was positively associated with multiple taxa including two Blautia species (Blautia caecimuris and Blautia hansenii).
GBM-taxa pair associations shown are those that were significant at g <.20 after FDR correction (representing 25 unique taxa and 12 unique
GBMs). Heatmap indicates correlation coefficient. Blautia Unclassified”:Blautia Unclassified MSJ 36, Blautia Unclassified Marseille*® = Blautia
Unclassified Marseille P3201T, Roseburia Unclassified” = Roseburia Unclassified CLA AA H209, Roseburia Unclassified® = Roseburia Unclassified
831b, Roseburia Unclassified™ = Roseburia Unclassified BX1005, Roseburia Unclassified®® = Roseburia Unclassified CLA AA H204, Subdoligranulum
Unclassified#=Subdoligranulum Unclassified APC924 74.

TABLE 2 Brainregion of interest and clinical symptom correlations.

Withdrawal Anxiety Depression Craving for alcohol Sleep quality
Brain ROI r p q r p q r p q r p q r p q
Volume
ACC 0.13 0.63 072 -039 014 045 -0.28 0.30 0.79 -0.21 043 0.69 0.23 0.44 0.88
Amygdala 0.32 0.22 035 -0.04 0.88 095 0.12 0.67 0.83 -045 0.08 0.67 0.04 0.88 0.88
Hippocampus -0.10 0.73 0.73 -0.18 0.52 090 0.07 0.81 0.83 -0.27 0.30 0.69 0.40 0.16 0.74
Insula 0.34 020 035 -0.09 075 095 -0.21 044 0.83 -0.32 0.23 0.69 -0.21 0.48 0.88
Surface area
ACC 0.36 0.17 035 -0.02 095 095 0.11 0.67 0.83 -0.14 0.62 0.79 0.38 0.18 0.74
Insula 0.60 0.01* 0.11 0.16 0.56 090 -0.06 0.83 0.83 -0.07 0.79 0.79 0.09 0.76 0.88
Cortical thickness
ACC -041 011 035 -046 0.07 045 -048 0.06 0.48 0.24 0.37 0.69 -0.06 0.83 0.88
Insula -0.30 0.27 036 -036 017 045 -0.35 0.18 0.73 0.07 0.79 0.79 -0.06 076 0.88

Note: Withdrawal was evaluated by the average of the max CIWA scores for days 1-4 of treatment, Anxiety was evaluated using the BSA, Depression

was evaluated using the MADRS, Craving was evaluated using the PACS, and sleep quality was evaluated using the PSQI. Pearson correlation

coefficients (r) reported. *p <0.05, **q <0.05.
Abbreviation: ACC, anterior cingulate cortex.

unique taxa and 12 unique GBMs (Figure 2D). See Table S3 for the
results of all bacterial and GBM correlations performed.

Clinical phenotype relationships with brain
morphometry and microbiome-associated features

Brain morphometry regions were correlated with clinical symp-
tom phenotypes, and insula surface area was positively associated
with alcohol withdrawal severity scores (r=0.60, g=0.107; Table 2;
Figures S5 and S6H). Cortical thickness of the ACC was moderately
negatively associated with both depression (r=-0.48, q=0.485,
Figure S7C) and anxiety (r=-0.46, g=0.449; Figure S7F), but nei-
ther reached statistical significance. Amygdala and hippocampus
morphometry were not associated with clinical symptom severity in
this study cohort (Figure S5, Table S4).

Clinical symptom scores were correlated with alpha diver-

sity metrics to investigate any associations in overall gut microbial

diversity with clinical phenotypes of patients with AUD and none
were significantly correlated (Figure 3A, Table S5). When individual
taxa were assessed with clinical phenotypes, there were 18 taxa
that had moderate associations with alcohol-associated clinical
symptoms that were significant before FDR correction (p <0.05), in-
cluding five classified to the genus Blautia, but Blautia hansenii abun-
dance and subjective depression severity was the only relationship
that was statistically significant after multiple comparisons correc-
tion (r=0.74, q=0.099; Figure 3B, Table S3). When GBM pathway
relative abundance was correlated against clinical symptom severity,
the abundance of several GBM pathways was positively associated
with anxiety (Figure 3C). GBM pathways positively correlated with
anxiety severity included Dopamine degradation (r=0.54,9=0.218),
GABA synthesis | and Il (r=0.54, q=0.218; r=0.53, g=0.218, re-
spectively), Histamine degradation (r=0.54, g=0.218), Propionate
degradation | (r=0.54, qg=0.218), and Nitric oxide degradation |
(r=0.49, q=0.271), however, none of these correlations were statis-

tically significant (Table S3).
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Brain morphometry and microbiome comparisons:

Amygdala volume associated with multiple gut
microbiome biomarkers

CLINICAL & EXPERIMENTAL RESEARCH

When morphometry of brain ROIs and alpha diversity metrics
(i.e., Shannon Index, Inverse Simpson, and Chaol) were compared,
amygdala volume was positively associated with Shannon Index
(r=0.53, g=0.147; Figure 4A, Figure S8A), while ACC cortical thick-
ness was negatively associated with Shannon Index (r=-0.53,
q=0.147; Figure 4A, Figure S8B). Similar relationships were ob-
served between Chaol and both ACC cortical thickness and amyg-
dala volume (r=-0.47,q=0.274;r=0.49, q=0.274, respectively), but

these relationships did not reach statistical significance (Figure 4A,
Table Sé). Of the brain morphometric values correlated with the
relative abundance of individual taxa, the amygdala was the sole ROI
that had statistically significant associations (Figure 4B, Table S3).
The bacterial taxa significantly correlated with amygdala volume
included negative associations with Anaerostipes hadrus (r=-0.64,
q=0.123), Dorea formicigenerans (r=-0.66, q=0.105), Blautia obeum
(r=-0.67, q=0.105), Blautia (r=-0.58, q=0.176), Ruminococcus
(r=-0.72, q=0.058), and Eubacteriales (r=-0.60, q=0.168), and
positive associations with Bacteroides uniformis (r=0.72, g=0.058),
Phocaeicola dorei (r=0.61, g=0.168), Phocaeicola vulgatus (r=0.72,
q=0.058), and Bacteroidaceae (r=0.57, g=0.198). GBMs also were

(A) 100 (©) 1o
Propionate degradation | . i @D
- 0.60 L 050
Shannon - 020 N NG dogge| ° o
Correlation
0.02 Histamine degradation . -015
-0.25
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pson - .026 - 080
l : GABA synthesis Il ° -1.00
- -0.60 ezt
GABA synthesis | .
Chaot ® -1.00
Il Missing Dopamine degradation .
Anxiety Craving  Depression Sleep Quality Withdrawal ® AlPha Diversity Butyrate synthesis| @
(Days 1-4) Anxiety Withdrawal
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Blautia faecis ® 0.2
Holdemanella porci ) -0.0 Correlation
Gemmiger formicilis ®
Eubacterium coprostanoligenes ° -0.2
Blautia Unclassified# ° - .04
Blautia Unclassified Marseille ® - .08
Tyzzerella nexilis ° ’
Phascolarctobacterium faecium ° -1.0
Faecalibacillus Unclassified# ® ® Organism 2
Escherichia coli ®
Blautia massiliensis ®
Anaerotruncus colihominis ® ®
Faecalibacillus Unclassified#a ®
Ruminococcus torques ®
Blautia hansenii [®]
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FIGURE 3 Gut microbiome taxonomic and functional associations with clinical phenotype. (A) Pearson correlation coefficient (r) dot
plot of alpha diversity metrics with clinical symptom scores. (B) Pearson correlation coefficient (r) dot plot of bacterial taxa abundance
with clinical symptom scores. Blautia Unclassified#=BIautia Unclassified MSJ, Faecalibacillus Unclassified#= Faecalibacillus Unclassified H12,
Faecalibacillus Unclassified*® = Faecalibacillus Unclassified MSK20. (C) Pearson correlation coefficient (r) dot plot of GBM pathway abundance
with clinical symptom scores. For all plots, the heatmap indicates the correlation coefficient. All dots on the plot represent unadjusted
p<0.05, except for panel A where all comparisons are shown. Boxes indicate statistical significance of FDR q<0.20.

FIGURE 4 Gut Microbiome Taxonomic and Functional Associations with Brain ROls. ACC, anterior cingulate cortex; InvSimpson, Inverse
Simpson. (A) Pearson correlation coefficient (r) dot plot of alpha diversity metrics with brain ROls. (B) Pearson correlation coefficient (r) dot
plot of taxa abundance with brain ROls. Blautia Unclassified® = Blautia Unclassified DFI 4 84, Roseburia Unclassified” = Roseburia Unclassified
CLA AA H204. (C) Pearson correlation coefficient (r) dot plot of GBM pathway abundance with brain ROIs. For all plots, the heatmap
indicates the correlation coefficient. All dots on the plot represent unadjusted p <0.05, except for panel A where all comparisons are shown.
Boxes indicate statistical significance of FDR q<0.20.
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correlated with brain ROl measures and a similar predominance of
amygdala morphometry associations occurred, with seven GBM
pathways demonstrating moderate GBM-amygdala volume asso-
ciations (Figure 4C). Although not statistically significant, positive
associations between GBMs and amygdala volume were seen with
the Butyrate synthesis | (r=0.57, g=0.247) and Glutamate synthe-
sis | (r=0.51, g=0.247) pathways, while negative GBM associations
with amygdala volume included Dopamine degradation (r=-0.53,
q=0.247), GABA synthesis | (r=-0.54, g=0.247), GABA synthesis
Il (r=-0.51, g=0.247), Histamine degradation (r=-0.53, q=0.247),
and Propionate degradation | (r=-0.53, g=0.247; Table S3).

DISCUSSION

AUD is an incredibly complex disorder with neurologic (Carbia
et al., 2021; Koob & Colrain, 2020) and gastrointestinal (Bishehsari
et al., 2017) pathology, which provides a multitude of potential gut-
brain signaling pathways. Shared withdrawal, sleep disturbance,
craving, anxiety, and depressive symptoms that are frequently expe-
rienced by patients with AUD during detoxification from alcohol im-
pact both treatment efficacy and risk for relapse (Ames et al., 2020;
Wallen et al., 2019). Although this exploratory research can only
provide preliminary evidence of possible gut-brain signaling mecha-
nisms in AUD, we discovered clinically and statistically significant
microbiome-associated features that had shared associations with
brain morphometry and clinical symptoms that can be used to in-

form future hypothesis-driven prospective research.

Amygdala volume is associated with several microbial
features in patients with AUD

The amygdala had the strongest and most consistent relationships
with the gut microbiome in this study, having significant associations
with the abundance of several taxa in addition to gut microbiome
community measures (i.e., alpha diversity). We were specifically in-
terested in amygdala volume as a brain ROI in this research due to
previous morphometric variation associations with heavy alcohol
use, AUD, and stress-associated disorders (Lautarescu et al., 2020;
Senatorov et al,, 2015). Amygdala volume was positively corre-
lated with alpha diversity metrics of microbial richness (Chao 1)
and both richness and evenness (Shannon index), although Chaol
associations with amygdala volume did not meet statistical signifi-
cance (p=0.052). Ten taxa were significantly positively and nega-
tively associated with amygdala volume. The positively associated
taxa with amygdala volume fell under the Bacteroidaceae family,
while the negatively associated taxa (Dorea formicigenerans, Blautia
obeum, and LKT Blautia) were classified to the same genera previ-
ously implicated with increased intestinal permeability in individuals
with AUD (Leclercq, Matamoros, et al., 2014). Increased intestinal
permeability facilitates translocation of bacterial byproducts (such
as endotoxin) into the systemic circulation (Bishehsari et al., 2017;

Leclercq et al., 2012), and has been shown to be associated with el-
evated markers of inflammation and end-organ disease in patients
with AUD, irrespective of the amount of alcohol consumed prior to
inpatient treatment (Leclercq, Matamoros, et al., 2014).

Several GBMs were also found to be significantly associated with
amygdala volume, such as negative associations with GABA synthesis
pathways and positive associations with glutamate synthesis path-
ways, which are involved with the modulation of excitatory signaling
involved in symptoms such as withdrawal and anxiety. These asso-
ciations suggest that microbiome-associated signaling pathology to
the amygdala may involve a disruption in the balance of functional
genes involving inhibitory and excitatory neurotransmitter signaling
pathways. Whether or not the increase or decrease in the compo-
nents of these GBM pathways in fecal samples leads to a measurable
change in gut-brain signaling, or if the increase or decrease in GBM
abundance is a cause or a compensatory mechanism from the pa-
thology leading to increased symptom severity is not known at this
time. Continued research with larger sample sizes in patients with
and without AUD will build on these preliminary findings.

Nevertheless, there is well-described research linking the struc-
ture, function, and development of the amygdala to the gut mi-
crobiome in rodent and human studies. In germ-free mice lacking
a gut microbiome, several altered characteristics of the amygdala
have been reported including lower BDNF expression, higher vol-
umes, and hyperactivity of neuronal systems including synaptic and
cholinergic transmission (Hoban et al., 2018; Stilling et al., 2015).
In humans, probiotic supplementation with Bifidobacterium longum
NCC3001 reduced both amygdala-associated negative emotional
stimuli responses and subjective depression scores in subjects with
irritable bowel disease (Pinto-Sanchez et al., 2017). Therefore, our
findings contribute to the accumulating evidence supporting gut-
brain signaling pathways from the gut microbiome to the amygdala
and provide early evidence of potential taxa-specific associations
that may be investigated in future research of mechanisms underly-
ing microbiome-associated neuropathology in AUD.

Disparate brain and clinical feature associations with
Blautia species suggest heterogeneous functions of
Blautia-associated taxa

Several Blautia taxa were associated with brain ROl morphometry,
clinical symptom severity, and clinically relevant GBM pathways in
this population of treatment-seeking subjects with AUD. For exam-
ple, in addition to the previously described relationships between
Blautia taxa and amygdala volume, Blautia Unclassified DFI 4 84 was
negatively associated with both ACC and insular cortical thickness.
The abundance of Blautia massiliensis was positively associated
with both ACC volume and surface area, along with reductions in
subjective sleep quality (as indicated by an increased PSQI score).
Subjective reports of increased symptoms of depression were
positively associated with Blautia hansenii and Blautia Unclassified
Marseille P3201T abundance while craving scores were negatively
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associated with Blautia faecis and Blautia Unclassified MSJ 36. It is
important to note that not all reported associations remained signifi-
cant after FDR correction, but these shared relationships between
Blautia taxa, brain morphometry, symptom measures, and functional
microbiome data (i.e., GBMs) provide important preliminary infor-
mation supporting further discovery.

In the literature, Blautia taxa have been hypothesized to have
multiple roles and relationships with human physiology, ranging
from metabolic properties beneficial for human health to associa-
tion with clinical markers of disease (Leclercq et al., 2021; Leclercq,
Matamoros, et al., 2014; Liu et al., 2021). Research annotating
Blautia at the taxonomic level of genus and species has reported
both positive and negative associations with sleep quality across
measures of sleep efficiency, total sleep time, and subjective sleep
quality (Smith et al., 2019). The connection of Blautia taxa to sleep
in the literature supports our finding connecting Blautia massilien-
sis abundance to poor subjective sleep quality. As most currently
available research has been performed using genus-level taxa, fu-
ture work with species-level data will clarify if the divergent rela-
tionships of sleep quality with Blautia taxa are species-specific or
more dependent on patient phenotype and environmental condi-
tions. Blautia abundance has also been connected to heavy alco-
hol use and known complications of AUD in other research. For
example, a recent binge drinking episode was associated with an
increase in the abundance of Blautia wexlerae (Carbia et al., 2023),
and the relative abundance of Blautia was positively associated
with markers of intestinal permeability linked to increased in-
flammation and systemic complications (Leclercq, Matamoros,
et al., 2014).

In microbiome niches such as the gut microbiome, different
Blautia species may metabolize heterogenous metabolites or other
mediators that signal to the brain in a manner that differentially
impacts subjective anxiety, depression, sleep disruption, or crav-
ing depending on the environmental conditions and substrates.
For example, until the isolation and classification of gram-negative
Blautia massiliensis, the entirety of the genus Blautia was thought
to be gram positive prompting a revised description of the genus
(Durand et al., 2017). Several Blautia species including Blautia mas-
siliensis (associated with poor sleep quality) were positively asso-
ciated with an increased abundance of the tryptophan synthesis
pathway. Other Blautia species had incongruent associations with
GBM pathways. For example, Blautia hansenii was positively asso-
ciated with quinolinic acid degradation, while Blautia Unclassified
MSJ 36 was negatively associated with quinolinic acid degrada-
tion. Quinolinic acid, a neurotoxic byproduct of the kynurenine
pathway associated with glutamate release and reactive oxygen
species, is significantly elevated in treatment-seeking patients
with AUD (Leclercq et al., 2021). We report positive associations
between amygdala volume and ACC surface area with glutamate
synthesis | in our patient cohort, suggesting a potential relation-
ship between Blautia species and byproducts of the kynurenine
pathway that can be explored in future research. Importantly,
the specific role of different Blautia species in human health and
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AUD-associated disease remains to be determined in future con-

firmatory and mechanistic research.

Additional putative gut-brain signaling associated
bacteria: Phocaeicola dorei, Phocaeicola vulgatus,
Escherichia coli, Prevotella copri, and Ruminococcus

Other bacteria that were relevant in this analysis due to collective
associations across clinical phenotype, brain ROI, and GBM do-
mains included Phocaeicola dorei, Phocaeicola vulgatus, Escherichia
coli, Prevotella copri, and Ruminococcus taxa. The abundance of
Phocaeicola dorei and Phocaeicola vulgatus taxa were both nega-
tively associated with ACC average thickness and positively as-
sociated with the GBM pathway glutamate synthesis I. Increased
glutamate synthesis in gut microbiome communities shows rel-
evance for alcohol-specific symptoms. For example, in our re-
search, higher withdrawal scores were associated with increased
glutamate synthesis, while another study reported associations
between increased fecal GBM glutamate synthesis pathways
and higher craving scores in young adult binge drinkers (Carbia
et al., 2023). Phocaeicola dorei and Phocaeicola vulgatus may have
possible roles in bile acid deconjugation, as levels of these taxa
have been correlated with unconjugated bile acids in fecal micro-
biome transplant studies and have been shown to produce bile salt
hydrolase using in vitro experiments (Bustamante et al., 2022; Xu
et al., 2023). These bacteria have been linked to the production
of short-chain fatty acids (O Cuiv et al., 2017), and we observed
moderate positive associations between Phocaeicola vulgatus and
the butyrate synthesis | pathway, and negative associations oc-
curred between Phocaeicola dorei and propionate Degradation I.
Increased bile acid excretion and short chain fatty acid synthesis
are considered positive gut-brain signaling mechanisms through
a reduction of inflammation (Xu et al.,, 2023), parasympathetic
nervous system activation (Cryan et al., 2019), and modulation of
microglia function (Erny et al., 2015). Therefore, further investiga-
tion into the directionality and clinical implications of physiologic
Phocaeicola taxa associations, such as increased bile acid excretion
and short-chain fatty acid synthesis, versus pathologic pathways
like increased glutamate synthesis may inform the role of these
taxa in brain signaling and the associated mechanisms.

The abundance of Escherichia coli in gut microbiome samples
was associated with brain ROl morphometry, clinical symptom se-
verity, and GBM abundance in our study cohort. Escherichia coli
was negatively associated with amygdala volume and was posi-
tively associated with craving for alcohol. Escherichia coli also had
significant associations with several GBM pathways including a
positive association with dopamine degradation, histamine degra-
dation, GABA synthesis | and I, and propionate degradation I, and
a negative association with S-Adenosylmethionine (SAM) synthe-
sis. Shared negative associations between amygdala volume and
both Escherichia coli and S-Adenosylmethionine (SAM) synthesis,
along with the known associations of Escherichia coli to mechanisms
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involving inflammation and maintenance of the gut barrier (Amin
et al., 2009) and S-Adenosylmethionine (SAM) synthesis to positive
impacts on depressive symptoms and hepatic protection suggest
these microbiome-associated features may be involved in signal-
ing pathways moderating symptom severity in patients with AUD
(Cederbaum, 2010).

An increased abundance of Prevotella copri in gut microbiome
samples was associated with lower subjective symptom burden in-
cluding anxiety, depression, and sleep quality scores. Despite con-
sistent associations with Prevotella copri abundance and clinical
symptom severity, Prevotella copri was not significantly associated
with brain ROl or GBM biomarkers. Interestingly, the association
of Prevotella copri abundance with markers of health like glucose
response have been conflicting in the literature (Kovatcheva-
Datchary et al.,, 2015; Pedersen et al., 2016), and an increased
abundance of this taxon has also been associated with markers
of end-organ disease like liver fibrosis (Dong et al., 2020). As the
abundance of Prevotella in the gut microbiome has been demon-
strated to be strongly influenced by lifestyle choices such as al-
cohol intake or diet (De Filippis et al., 2016; Kwan et al., 2022),
examining interactions between food and alcohol intake in the
analysis of clinical phenotype and Prevotella associations may
inform the functional role of this bacteria in patients with AUD.
Finally, the abundance of Ruminococcus callidus was negatively
associated with PSQI scores indicating a positive relationship
between abundance of this taxa and improved subjective sleep
quality. In other research, patients with AUD who had increased
intestinal permeability had a significant decrease in Ruminococcus
taxa (Leclercq, Matamoros, et al., 2014), suggesting these taxa
may be associated with both improved gastrointestinal barrier
function and AUD-associated symptom burden. This preliminary
identification of bacterial taxa associated with gut-brain signaling
outcomes (i.e., brain morphometry, neuropsychologic symptoms)
can potentially inform important study design considerations in-
cluding sequencing strategy and targeted metabolites involved in
GBM pathways and bacterial utilization.

While this study provides a novel exploration of brain morpho-
metrical regions of interest and the gut microbiome, it is not without
limitations. This study is based on secondary analysis and rese-
quencing of fecal samples that were collected during the primary
microbiome protocol, and the sample size is constrained by the num-
ber of patients who had structural MRI images obtained in addition
to fecal samples for gut microbiome analysis. This population of in-
dividuals with AUD was heterogeneous and may not be completely
representative of a general population of individuals with severe
AUD. Variables such as the amount of alcohol consumed prior to
treatment and demographics are not evenly distributed across this
set of patients, and the study cohort did not include control par-
ticipants. We also understand that having subjects scanned on two
different scanners might have limited the effect size of detected
structural differences. However, using the data from both scanners
expands the generalizability of this model which should be exam-
ined with a larger sample size. Although we use GBMs that provide

more insight into gut-brain pathways, the concept of GBMs is still
quite new, and therefore, comparisons to other studies using GBMs
was limited to the small number of other studies that included GBMs
as microbiome-associated biomarkers. Finally, the small sample size
prevented the use of advanced statistical modeling or the ability to
control for covariates, and bivariate comparisons were used for all
statistics. Replication of these measures in study cohorts with larger
sample sizes and control participants will be necessary to confirm
if the microbiome-associated biomarkers associated with MRI and
clinical features found in this analysis can be replicated while con-
trolling for patient-specific factors and providing meaningful clinical
inference. Despite the limitations, this study provides a framework
to guide future researchers who aim to integrate multimodal fea-
tures to perform biobehavioral investigations of mechanisms un-
derlying gut-brain signaling and clinical phenotype in patients with
AUD.

Using structural MRI and gut microbiome features, along with
clinical symptom data relevant to AUD, we identified clinically and
statistically significant features that can be used to understand
altered gut-brain signaling pathways resulting from heavy alcohol
use. Although there have been other studies focused on associa-
tions between structural MRI brain ROl and gut microbiome data
in patients with neuropsychiatric disorders, to our knowledge, this
is the first study integrating MRI, microbiome, and clinical features
in patients with AUD. Furthermore, capitalizing on a methodology
that incorporates multiple components of a neuroactive pathway
(Valles-Colomer et al., 2019), the use of GBM pathways as opposed
to quantifying individual functional genes enables increased con-
fidence when drawing inferences from this preliminary functional
microbiome data. Although we do not yet understand whether
pathologic gut-brain signaling precedes heavy alcohol use and
increases the risk for AUD, or if these signaling processes are in
response to alcohol-associated pathology, we identify prelimi-
nary taxonomic and functional microbiome features associated
with patient phenotype that can be used to inform mechanistic
targets and future interventional research. This work combining
results from both MRI and the microbiome in patients with AUD
provides limited preliminary gut-brain signaling data, however,
these results will help support future longitudinal analyses that
may provide a more substantive road map for meaningful clinical
inferences. Our hope is the results generated from this research
will produce pre-clinical and translational research hypotheses to
facilitate continued knowledge and improved health outcomes in
patients with AUD.
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