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Abstract
Background: Alcohol use disorder (AUD) is commonly associated with distressing psy-
chological symptoms. Pathologic changes associated with AUD have been described 
in both the gut microbiome and brain, but the mechanisms underlying gut-brain sign-
aling in individuals with AUD are unknown. This study examined associations among 
the gut microbiome, brain morphometry, and clinical symptoms in treatment-seeking 
individuals with AUD.
Methods: We performed a secondary analysis of data collected during inpatient treat-
ment for AUD in subjects who provided gut microbiome samples and had structural 
brain magnetic resonance imaging (MRI; n = 16). Shotgun metagenomics sequencing 
was performed, and the morphometry of brain regions of interest was calculated. 
Clinical symptom severity was quantified using validated instruments. Gut-brain 
modules (GBMs) used to infer neuroactive signaling potential from the gut micro-
biome were generated in addition to microbiome features (e.g., alpha diversity and 
bacterial taxa abundance). Bivariate correlations were performed between MRI and 
clinical features, microbiome and clinical features, and MRI and microbiome features.
Results: Amygdala volume was significantly associated with alpha diversity and the 
abundance of several bacteria including taxa classified to Blautia, Ruminococcus, 
Bacteroides, and Phocaeicola. There were moderate associations between amygdala 
volume and GBMs, including butyrate synthesis I, glutamate synthesis I, and GABA 
synthesis I & II, but these relationships were not significant after false discovery rate 
(FDR) correction. Other bacterial taxa with shared associations to MRI features and 
clinical symptoms included Escherichia coli and Prevotella copri.
Conclusions: We identified gut microbiome features associated with MRI morpho-
metry and AUD-associated symptom severity. Given the small sample size and bi-
variate associations performed, these results require confirmation in larger samples 
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INTRODUC TION

The misuse of alcohol is a global public health concern that 
compromises both individual and societal well-being, result-
ing in an estimated three million deaths annually (World Health 
Organization, 2019). Alcohol use disorder (AUD) is a highly prev-
alent disease, and approximately one-third of the United States 
adult population has met the Diagnostic and Statistical Manual 
of Mental Disorders-5 (DSM-5) criteria for AUD at some point in 
their lives (Witkiewitz et al., 2019). AUD is considered to be mainly 
a disorder of the brain reward circuit where alterations in neu-
rotransmitter systems such as dopamine, serotonin and glutamate, 
among others, are associated with the positive and negative rein-
forcement processes leading to craving for alcohol and increased 
dependence over time (Gilpin & Koob, 2008).

Chronic heavy alcohol use and AUD are associated with many 
distressing symptoms including symptoms of anxiety and de-
pression, sleep disruption, and altered stress handling (Wallen 
et al., 2019). Altered basal plasma cortisol levels, often seen in pa-
tients with AUD, are associated with similar symptoms including 
sleep changes, symptoms of depression and anxiety, as well as im-
mune upregulation and inflammation (Fiksdal et al., 2019; Leclercq, 
De Saeger, et al., 2014). Alcohol-induced inflammation and neuro-
endocrine dysregulation may have multifactorial implications for 
patients with AUD including exacerbation of common symptoms 
(i.e., craving, withdrawal, anxiety, depression, and sleep distur-
bance), increased risk of relapse, and compounded risk for chronic 
disease (Rohleder, 2019). Gastrointestinal manifestations are also 
common complaints in patients with AUD (Bishehsari et al., 2017), 
which are likely associated with implications of chronic alcohol 
consumption including alteration of the gastrointestinal environ-
ment and the gut microbiome (Bishehsari et  al.,  2017; Leclercq, 
Matamoros, et al., 2014).

The human gut microbiome is defined as the commensal gut 
bacteria that live within and coexist with humans (and their genes). 
Gut microbiome bacteria perform vital physiologic functions 
such as immune regulation, nutrient metabolism, and produc-
tion of signaling metabolites like short-chain fatty acids (Belkaid 
& Harrison, 2017; Silva et al., 2020). Heavy alcohol consumption 
induces profound changes in the gastrointestinal environment in-
cluding lower pH of feces and increased gut permeability (Engen 
et al., 2015; Leclercq et al., 2012; Leclercq, Matamoros, et al., 2014) 
that is associated with the translocation of microbial byproducts 
and mediators from the gastrointestinal environment into the in-
testinal lumen and systemic circulation (Ferro et al., 2020). Heavy 

alcohol use and AUD have been associated with pathologic changes 
in the gut microbiome including decreased commensal bacteria 
(i.e. Lactobacillus, Bifidobacterium), reduced microbial diversity, 
and increased inflammatory bacteria like Proteobacteria (Ames 
et  al.,  2020; Leclercq, Matamoros, et  al.,  2014). Furthermore, 
inflammatory pathways were more intensively activated by lipo-
polysaccharide and peptidoglycan exposure in cells from subjects 
with AUD versus nondrinking controls, suggesting chronic alcohol 
exposure primes subjects for microbiome-induced inflammation 
(Leclercq, De Saeger, et al., 2014).

Interoceptive signaling of gut microbiome-associated mediators 
and metabolites to the brain, known as microbiota–gut–brain axis 
signaling, is hypothesized to occur through a number of mechanisms, 
including microbiome-derived metabolites, microbiome-immune 
crosstalk, and afferent gastrointestinal signaling mediated by the 
vagus nerve and enteric nervous system (Bassett et al., 2019; Cryan 
et al., 2019; Wang et al., 2018). Recent research also suggests bacte-
rial communities of the gut microbiome can influence brain function 
and behavioral phenotype and may be associated with the patho-
genesis of psychiatric disorders such as AUD (Carbia et  al.,  2021; 
Dinan & Cryan, 2017). Preclinical research has also shown that the 
gut microbiome can influence the key neural pathways implicated 
in AUD clinical manifestations and HPA axis alterations. For exam-
ple, germ-free mice have marked changes in brain regions associated 
with anxiety- and depressive-like symptoms including amygdalar 
(Stilling et al., 2015), hippocampal (Clarke et al., 2013), and cortical 
(Hoban et al., 2016) gene expression in addition to an exaggerated 
HPA axis response corresponding to changes in anxiety, cognitive, 
and social behaviors (Luczynski et al., 2016). Although there is com-
pelling evidence that sustained alcohol use induces inflammatory 
and stress-signaling mechanisms associated with symptom burden 
in AUD, the mechanisms and links to the known altered stress re-
sponses in patients with AUD are still being explored.

AUD is a heterogeneous condition that is incredibly difficult to 
manage, and pharmacological treatment modalities have limited 
efficacy (Heilig et al., 2019; Volkow et al., 2015). There is a criti-
cal need to identify alternative targets that can be studied in the 
context of AUD. In 2019, Valles-Colomer and colleagues devel-
oped a database of gut-brain signaling pathways, called gut–brain 
modules (GBMs), that are informed by the literature and calculated 
from shotgun metagenomics sequencing data (Valles-Colomer 
et al., 2019). GBMs describe the synthesis and degradation of neu-
roactive compounds by the gut microbiota and therefore allow for 
the assessment of specific processes relevant to gut–brain com-
munication from sets or pathways of genes rather than singular 

and controls to provide meaningful clinical inferences. Nevertheless, these results will 
inform targeted future research on the role of the gut microbiome in gut-brain com-
munication and how signaling may be altered in patients with AUD.
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genes. This enables more precise and reliable interrogation of gut–
brain communication versus interrogating what is achievable with 
single genes. Understanding microbially derived features and their 
associated signaling processes hold promise for nonpharmacologic 
interventions, but concrete mechanisms linking the microbiome 
to neurologic outcomes (brain morphometry or symptom sever-
ity) have yet to be determined in patients with AUD. Therefore, 
research focused on investigating relationships between bacte-
rial and functional features specific to the gut microbiome, brain 
morphometry from structural magnetic resonance imaging (MRI), 
and clinical symptoms may provide the necessary preliminary in-
formation to inform future targeted mechanistic studies aimed at 
addressing this knowledge gap. The objective of this exploratory 
secondary analysis study was to examine associations between 
the gut microbiome, structural MRI morphometry, and severity of 
AUD-associated clinical symptoms in treatment-seeking patients 
with AUD.

METHODS

Study overview

This is a secondary analysis that incorporated shotgun sequencing 
of previously collected gut microbiome samples from individuals 
with AUD during an inpatient treatment program at the National 
Institutes of Health Clinical Center. The primary work from this 
study included a longitudinal experimental design using 16S rRNA 
sequencing of oral and gut microbiome samples from patients un-
dergoing inpatient treatment for AUD (Ames et  al.,  2020; Barb 
et al., 2022). The original study and this secondary analysis were 
approved by the National Institutes of Health Institutional Review 
Board (NCT02911077) and primary data collection was conducted 
over approximately 1 year (2016–2017). Eligibility and clinical 
baseline measures were established via the National Institutes 
of Health-approved National Institute on Alcohol Abuse and 
Alcoholism natural history and research protocol (NCT02231840). 
This secondary analysis includes previously collected clinical data 
and structural MRI imaging measures that were analyzed with 
stored fecal samples that underwent shotgun metagenomics se-
quencing to explore relationships between the gut microbiome, 
morphometry of brain regions associated with the HPA-axis, and 
clinical phenotype variables in treatment-seeking patients with 
AUD (Figure 1). Please see Ames et al.  (2020), for full screening 
procedures, inclusion and exclusion criteria, and the primary study 
procedures.

Study population

A total of 16 treatment-seeking individuals with AUD enrolled at the 
NIH Clinical Center inpatient treatment program who had gut mi-
crobiome samples collected and structural MRI imaging performed 

during the four-week inpatient treatment period were studied 
(Figure 1A).

Clinical measures

Clinical measures encompassing alcohol use, intake history, and 
subjective symptoms of anxiety, depression, sleep quality, craving 
for alcohol, and withdrawal were collected upon consent into the 
natural history protocol (See Table S1 for full description and scor-
ing of alcohol-associated and clinical measures). To quantify drink-
ing patterns and characterize alcohol dependence severity for study 
population description, the Alcohol Dependence Scale, Alcohol 
Use Disorder Identification Test, Obsessive Compulsive Drinking 
Scale, Alcohol Timeline Followback (TLFB), and Lifetime Drinking 
History were collected at baseline during the first-week postad-
mission. The Bristol stool form scale was recorded to evaluate the 
consistency of the fecal sample collected for microbiome analysis. 
Individuals with current mood and/or anxiety disorders were deter-
mined using the Structured Clinical Interview for DSM-IV or DSM-
5. Participants also completed instruments quantifying symptoms 
of depression and anxiety (the Brief Scale for Anxiety [BSA] and 
Montgomery Asberg Depression Rating Scale [MADRS] subscales of 
the Comprehensive Psychopathological Rating Scale questionnaire, 
respectively), subjective sleep quality (Pittsburg Sleep Quality Index 
[PSQI]), craving for alcohol (Penn Alcohol Craving Scale [PACS]), and 
withdrawal from alcohol (Clinical Institute Withdrawal Assessment 
[CIWA]). The PSQI was administered on days 2 and 28 of admission, 
PACS at 7-day intervals starting from the fifth day of admission, and 
BSA/MADRS also at 7-day intervals starting from the second day of 
admission. Scores from the PSQI, PACS, BSA, and MADRS collected 
at the timepoint closest to the date of the structural MRI and micro-
biome sample were used for this cross-sectional analysis (Figure 1A). 
The daily maximum CIWA score from admission days 1–4 was col-
lected for each patient and averaged for the quantification of alcohol 
withdrawal severity.

Nutritional dietary intake during inpatient treatment

Nutritional intake during inpatient treatment was monitored using 
food tickets at the NIH Clinical Center. Detailed procedures for 
dietary data collection and processing have been described previ-
ously (Ames et al., 2020). Briefly, food tickets accompanied each 
meal that presented the food components provided, and the per-
cent of each component consumed were recorded by the subject 
and returned to the Clinical Center nutrition department. Food in-
formation was coded and uploaded to the Nutrition Data System 
for Research software (version 2016/17, Nutrition Coordinating 
Center, University of Minnesota). The nutritional intake data 
analyzed in the NDSR software was used to calculate the Health 
Eating Index (HEI-2015) for each patient (Reedy et al., 2018). Food 
tickets were analyzed on the day of and the day before the fecal 
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sample was collected for gut microbiome analysis, and nutritional 
information for those 2 days was averaged. Total kcal daily intake 
and average carbohydrate, protein, fat, and dietary fiber intake 
are reported.

Magnetic resonance image acquisition and processing

A whole brain structural MRI scan was obtained for volumetric 
and morphological analyses in this cohort of patients once dur-
ing inpatient admission. MRI data were acquired on 3 Tesla 
Siemens Prisma (Siemens Healthineers, Erlangen, Germany; n = 9) 
and 3 Tesla Philips Achieva (Philips Medical Systems, Best, The 
Netherlands; n = 7) scanners. A spin echo sequence (TR 600 ms, 
TE 8.9 ms, flip angle 75°, NEX 1, acquisition matrix 320 × 224, 
slice thickness 4 mm, pixel spacing 0.72 × 0.72 mm) was used in 

the Siemens scanner, while a gradient echo sequence (TR 8.2 ms, 
TE 3.7 ms, flip angle 8°, NEX 1, acquisition matrix 240 × 240, slice 
thickness 1 mm, pixel spacing 0.94 × 0.94 mm) was used in the 
Philips scanner to acquire 3D sagittal T1-weighted anatomical im-
ages. All MR imaging was performed at the National Institutes of 
Health Clinical Center.

For cortical reconstruction and volumetric segmentation of the 
T1 brain MR images, we used FreeSurfer (http://​surfer.​nmr.​mgh.​
harva​rd.​edu) image analysis suite (v7.2) to obtain regional measures 
of cortical volume, surface area, and thickness. The image process-
ing pipeline in FreeSurfer included motion correction and averag-
ing of T1-weighted images, removal of nonbrain tissue, automated 
Talairach transformation, segmentation of the subcortical white 
matter and deep gray matter structures, intensity normalization, 
tessellation of the gray matter white matter boundary, automated 
topology correction, and surface deformation. Expanded technical 

F I G U R E  1  Study overview. (A) Overview of the study design. Cross sectional study measures collected from patients with AUD admitted 
to treatment program at the NIH Clinical Center. The fecal sample that was collected closest to the date the structural MRI was completed 
underwent shotgun metagenomics sequencing. (B) Schema of three comparison analyses and workflows of cross-sectional investigations 
of clinical and gut microbiome data. Brain regions of interest compared with clinical symptom characteristics/measures (orange bubble). 
Brain regions of interest compared with alpha diversity metrics, abundant taxonomic features, and gut–brain modules (purple bubble). Gut 
microbiome features compared with clinical symptom characteristics (pink bubble). Created with BioRe​nder.​com.
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details of the FreeSurfer image processing procedures can be found 
in (Dale et al., 1999; Desikan et al., 2006; Fischl & Dale, 2000). After 
the FreeSurfer pipeline processing, parcellated morphological vol-
ume measures of the following bilateral components were quanti-
fied: amygdala, anterior cingulate cortex (ACC), hippocampus, and 
insula; as well as pons, brain volume (without ventricles), and brain 
stem for normalization procedures. Brain regions of interest (ROI) 
were prospectively selected due to their association with HPA-axis 
activity (Critchley, 2005; Quevedo et al., 2017), and well-described 
morphometric modulation associated with chronic alcohol use and 
AUD (Grace et al., 2021; Momenan et al., 2012; Yang et al., 2016). 
For surface area and thickness measures, the following bilateral 
composite regions of interest, as defined in Pennington et al. (2015), 
were calculated: (1) ACC includes rostral anterior cingulate and cau-
dal anterior cingulate regions, and (2) insula. In addition, normalized 
volume measures were calculated by dividing each regional volume 
measure by the brain volume (without ventricles), and normalized 
surface area measures were calculated by dividing the surface area 
of each bilateral composite region with the white matter surface 
area in each hemisphere.

Fecal sample collection and processing

The collection, processing, and storage procedures of fecal samples 
for gut microbiome analysis have previously been described in detail 
(Ames et al., 2020). Briefly, whole stool was collected using sterile 
conditions from each participant upon deposition and was imme-
diately frozen at−20°C. Within up to 3 days, samples were thawed, 
diluted with 1:3 phosphate-buffered saline solution, and homoge-
nized. Aliquots were stored in a 2 mL microcentrifuge safe-lock tub 
at −80°C. Frozen aliquoted fecal samples (−80°C) from stool homog-
enization were used for shotgun metagenomics sequencing in the 
current study. The original study included up to 10 stool samples 
from each patient, but the current secondary analysis included one 
sample from each participant within the week two timeframe of 
inpatient treatment in which the sample closest to the date of the 
structural MRI was reprocessed for shotgun sequencing (approxi-
mately days 8–14 of inpatient treatment).

Fecal shotgun metagenomics sample 
processing methods

DNA was extracted from approximately 50 mg of stool samples 
in two stages including an initial homogenization in Lysis Matrix E 
tubes (MP Biomedicals) with a Precellys 24 Tissue Homogenizer 
(Bertin Instruments) and subsequent processing of the resultant su-
pernatant using the MagAttract PowerMicrobiome DNA/RNA EP 
kit (Qiagen) on an Eppendorf automated liquid handling system as 
per the manufacturer's instructions. Isolated DNA was then checked 
for concentration and quality on a BioTek Synergy HTX plate reader. 
Metagenomic libraries were prepared using the Nextera DNA Flex 

Library Prep Kit (Illumina) per the manufacturer's instructions with 
100 ng of DNA as sample input. The concentration of the resultant 
libraries was quantified using the Qubit dsDNA HS assay on a Qubit 
2.0 fluorometer (Life Technologies). Library size and quality were 
assessed via the Agilent High Sensitivity D5000 ScreenTape on an 
Agilent 4200 Tapestation. Metagenomic libraries were normalized to 
an equimolar concentration and pooled. The pool was diluted to 1.8 
pm, mixed with a 1% PhiX control library, and sequenced via a paired-
end run (75 bp × 75 bp) using a NextSeq 500/550 High Output v2 
150-cycle Reagent Cartridge on a NextSeq 500 sequencer (Illumina).

Shotgun metagenomics bioinformatics processing

FASTQ file processing

This work utilized the computational resources of the NIH HPC 
Biowulf cluster (http://​hpc.​nih.​gov). A total of 16 paired-end raw 
FASTQ files were submitted for quality control and process-
ing. Shotgun sequencing analysis was conducted using the ‘Just a 
Microbiology System’ 1.7.9 (JAMS) package which can be found on 
GitHub (https://​github.​com/​johnm​ccull​och/​JAMS_​BW) (McCulloch 
et  al.,  2023). All FASTQ files were submitted to FastQC (v0.11.9, 
https://​www.​bioin​forma​tics.​babra​ham.​ac.​uk/​proje​cts/​fastqc/​) for 
quality control checking and further submitted for quality trimming 
using Trimmomatic v0.36 (Bolger et  al.,  2014) with the following 
parameters: leading = 15, trailing = 15, slidingwindow = 4:18, head-
crop = 0, minlen = 36. Shotgun metagenomics sequence reads were 
aligned against the human genome (human genome build: GRCh38.
p14) with Bowtie2 v2.3.2 (Langmead & Salzberg, 2012) to remove 
host contamination. All unaligned reads were then assembled using 
MEGAHIT v1.2.9 (Li et al., 2015) within the JAMSalpha package.

Microbiome characterization

Taxonomy classification of the contigs was carried out using Kraken2 
(Wood et al., 2019) in JAMSalpha, and only contigs greater than 500 
base pairs were considered for taxonomic classification. A custom 
90 Gigabyte Kraken2 database was built January 2022 in JAMS 
from draft and complete genomes of all bacteria, archaea, fungi, vi-
ruses, and protozoa available in the NCBI GenBank (as of January 
2022) using the JAMSbuildk2db tool of the JAMS package (database 
name/version: JAMSdb202201_1.6.6_20220114). Taxonomy was 
expressed as the last known taxon (LKT), i.e., the classification with 
the lowest unambiguous taxonomic level. Alpha diversity indices 
(Inverse Simpson, Shannon Diversity Index, and Chao1) were com-
puted on the LKT parts per million (PPM) count table generated using 
the minimal filtering setting in JAMSbeta v1.8.3, which required 
genome completeness to be at least 5% in at least 5% of samples 
(McCulloch et  al.,  2023). Higher-order taxonomic summaries were 
calculated by collapsing the remaining LKT features after the mini-
mal filtering setting at the levels of phylum and genus, respectively.
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Abundance filtering and transformation

The top 100 most counted or “highly abundant” taxa were selected 
for downstream microbiome-associated bivariate analyses. The min-
imal filtering setting in JAMSbeta v1.8.3, i.e., genome completeness 
required to be at least 5% in at least 5% of samples, was also used 
to generate the bacterial feature table, and the 100 LKT with the 
greatest average part per million counts were extracted as the highly 
abundant taxa. The centered log ratio with parameterization (CLRp) 
transformation was computed on the highly abundant LKT feature 
table to account for compositionality and allow for downstream 
parametric testing (Erb, 2023). Scripts to perform CLRp transforma-
tion are publicly available for download from GitHub (https://​github.​
com/​thoma​zbast​iaans​sen/​deleuze).

Gut-Brain module analysis workflow

To support the clinical interpretation of microbiome-associated 
feature data, GBMs were computed from metagenomic sequenc-
ing data. GBMs represent functional pathways curated from the 
literature that have been reported to take place in the gut micro-
biome and are involved in microbiome-gut-brain communication 
(Valles-Colomer et  al.,  2019). Each GBM corresponds to a single 
neuroactive compound production or degradation process. To 
compute GBMs, bacterial functional potential identifiers were ob-
tained using the NIH Nephele platform from the National Institute 
of Allergy and Infectious Diseases Office of Cyber Infrastructure 
and Computational Biology, a microbiome analysis cloud-based 
platform for whole genome sequencing (https://​nephe​le.​niaid.​nih.​
gov) (Weber et al., 2018). Specifically, the whole genome sequenc-
ing bioBakery workflow (Beghini et al., 2021) was run on Nephele 
to construct a gene function relative abundance table output from 
HUMAnN v3.0.0.alpha.3 (Franzosa et al., 2018). From this gene func-
tion relative abundance table, the genefamilies_relab.tsv file was 
converted to Kyoto Encyclopedia of Genes and Genomes (KEGG) 
ids using the following command: humann_regroup_table with the 
-g flag as uniref90_ko. The KEGG id abundance table was then split 
using the humann_split_stratified_table command within HUMAnN 
to be used in the GBM workflow. KEGG pathways used to build 
GBMs were downloaded from https://​raesl​ab.​org/​softw​are/​gbms.​
html. The KEGG relative abundance feature table data was mapped 
to GBMs using Omixer-rpmR; a reference pathway mapping tool 
for metabolic module profiling of microbiome samples modified for 
the R programming environment (https://​github.​com/​omixer/​omixe​
r-​rpmR). The CLRp transformation was also performed on the GBM 
feature table for downstream statistical analysis.

Statistical analyses

All statistical analyses were conducted using JMP™ v16.0 (SAS 
Headquarters, Cary, NC) and the R programming environment. 

Means and standard deviations were calculated to describe group 
values of features across the study cohort. Because of the small 
and heterogenous sample, along with the exploratory nature of this 
work, bivariate comparisons were performed using Pearson corre-
lations between alcohol-associated clinical symptom severity and 
brain ROI morphometry, microbiome-associated features and brain 
ROI morphometry, and microbiome-associated features and alcohol-
associated clinical symptom severity, respectively (Figure  1B). 
Alcohol-associated clinical symptoms that were used in bivariate 
analyses included withdrawal from alcohol, sleep quality, depression, 
anxiety, and craving for alcohol. Bivariate relationships between 
GBMs and the top 100 most abundant gut microbiome taxa were 
also calculated to identify taxa-GBM correlation pairs. Descriptive 
statistics are presented for other relevant demographic information, 
clinical and nutrition data, drinking patterns, and alcohol depend-
ence severity data representing the study cohort in Table 1.

Multiple comparisons correction was applied to statistical com-
parisons using the Benjamini–Hochberg post hoc procedure (False 
Discovery Rate [FDR]) when testing associations between brain 
ROIs and clinical symptom severity, brain ROIs and microbiome 
features, and microbiome features and clinical symptom severity, 
respectively. As this is an exploratory study intended to produce 
preliminary data for future hypotheses, a q-value of 0.2 (i.e., an 
FDR corrected p-value <20%) was used as a threshold for statistical 
significance in the FDR corrected p values. Data are expressed as 
mean ± standard deviation.

RESULTS

Clinical, MRI, and microbiome characteristics of study 
population

A total of 16 participants had structural MRI, gut microbiome sam-
ples, and clinical phenotype data, and therefore were included in 
this secondary analysis study. Participants were 45 ± 11.6 years of 
age with a BMI of 23.89 ± 2.48 and were mostly white (56.25%) 
males (62.5%) who were current smokers (62.5%; see Table 1A for 
demographic and clinical averages of the study cohort). Participants 
reported an average of 18.44 ± 12.12 heavy drinking years and an 
average of 17.16 ± 9.78 drinks per day in the 90 days preceding inpa-
tient admission. The HEI for this inpatient cohort was 61.96 ± 10.52, 
and the total dietary fiber intake was 27.28 ± 13.70 g.

Mean values of brain ROI for volume (normalized to total brain 
volume without ventricles), surface area (normalized to white matter 
surface area), and cortical thickness values are shown in Table 1B. The 
mean gut microbiome sequencing depth was 4.44 ± 0.53 Gigabase 
pairs before trimming, and 4.16 ± 0.50 Gigabase pairs after trim-
ming, yielding an average assembly rate of 87.4 ± 5.1% (see Table S2 
for all FASTQ read statistics). A total of 9705 taxa were annotated 
in the gut microbiome samples after filtering in JAMS. The aver-
age Shannon diversity index of the patient cohort was 3.67 ± 0.40 
(see Figure S1 for all alpha diversity metrics calculated), and across 
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all 9705 taxa, Firmicutes predominated gut microbiome samples 
(81.72 ± 11.68%), followed by Actinobacteria (8.32 ± 10.51%) and 
Bacteroidetes (5.43 ± 6.75%). This distribution at the phylum level 
was similar when the top 100 most abundant taxa (used for down-
stream analysis) were averaged, with Firmicutes 83.63 ± 11.72%, 
Actinobacteria (7.96 ± 10.53%) and Bacteroidetes (5.12 ± 6.71%) en-
compassing the most abundant phyla (Figure 2A). The greatest num-
ber of the abundant genera originated from the Lachnospiraceae 
family (n = 42), and the taxonomic lineage of the top 100 genera 
is illustrated in Figure  2B. Of these genera, Blautia had the high-
est relative abundance (26.15 ± 8.61%), followed by Ruminococcus 
(11.22 ± 9.47%) and Roseburia (6.03 ± 5.96%; Figure  S2). Notably, 
there was a large degree of variation across individual participants 
in the PPM abundance quantified of these top 100 taxa (Figure S3).

A total of 4489 KEGG orthologs were extracted from the bio-
Bakery HUMAnN3 functional analysis, and 38 GBMs were detected 
after running the GBM workflow (Figure S4). The top 4 most abun-
dant GBMs were the ClpB (ATP-dependent chaperone protein), 
Glutamate synthesis I, S-Adenosylmethionine (SAM) synthesis, and 
Glutamate synthesis II pathways with 12.42%, 12.22%, 11.65%, 
and 10.44% average abundance (of total GBMs identified), respec-
tively (Figure 2C). When each GBM was correlated with the top 100 
taxa, there were 44 significant GBM-taxa pairs that consisted of 25 

TA B L E  1  Study participant information.

A. Demographics, clinical characteristics, and alcohol intake 
profiles

Characteristic, n = 16
Mean ± SD or 
N (%)

Age (years) 45 ± 11.61

BMI 23.87 ± 2.47

Sex

Male 10 (62.5%)

Female 6 (37.5%)

Race

White (non-Hispanic) 9 (56.25%)

Black (non-Hispanic) 5 (31.25%)

Black (Indigenous/non-Hispanic) 1 (6.25%)

Unknown Hispanics 1 (6.25%)

Smoking status

Smoker 10 (62.5%)

Non-smoker 5 (31.25%)

Missing 1 (6.25%)

Mean ± SD

BMI 23.89 ± 2.48

N (%)

Mood disorder

Yes 5 (31.25%)

Anxiety disorder

Yes 5 (31.25%)

Mean ± SD

Subjective symptoms

BSA 6.56 ± 5.05

MADRS 8.13 ± 4.38

PSQI Global Score 12.21 ± 3.89

CIWAa 5.81 ± 2.93

PACS 10.31 ± 7.28

Bristol Stool Scale 3.75 ± 1.39

Drinking measures

Average drinks per day 17.16 ± 9.78

Number of heavy drinking days 76.40 ± 22.77

Number of heavy drinking years 18.44 ± 12.12

ADS Score 21.60 ± 4.21

AUDIT total 30.27 ± 4.85

OCDS total 19.60 ± 9.45

Nutrition

Total HEI-2015 61.96 ± 10.52

Energy (kcal) 2622.28 ± 982.08

Total carbohydrate (g) 316.94 ± 128.99

Total protein (g) 120.64 ± 30.52

Total fat (g) 102.48 ± 55.47

(Continues)

A. Demographics, clinical characteristics, and alcohol intake 
profiles

Characteristic, n = 16
Mean ± SD or 
N (%)

Total dietary fiber (g) 27.28 ± 13.70

B. Morphometry of brain regions of interest from structural MRI

Brain region 
of interest 
(n = 16)

Volume 
(normalized %)

Surface area 
(normalized %)

Cortical 
thickness (mm)

ACC 0.752 ± 0.104 3.451 ± 0.464 2.522 ± 0.176

Amygdala 0.288 ± 0.027 N/A N/A

Hippocampus 0.735 ± 0.080 N/A N/A

Insula 1.200 ± 0.082 2.879 ± 0.114 2.879 ± 0.114

Note: (A) Demographics, clinical characteristics, symptom, and alcohol 
intake data in the study cohort. aMaximum CIWA score over the 
first 4 days at the start of treatment. (B) Volume, surface area, and 
cortical thickness values of brain regions of interest in the study 
cohort. Normalized volume measures were calculated by dividing each 
regional volume measure by the brain volume (without ventricles), 
and normalized surface area measures were calculated by dividing the 
surface area of each bilateral composite region with the white matter 
surface area in each hemisphere.
Abbreviations: ACC, anterior cingulate cortex; ADS, Alcohol 
Dependence Scale; AUDIT, Alcohol Use Disorders Identification Test; 
BMI, body mass index; BSA, Brief Scale for Anxiety; CIWA, Clinical 
Institute Withdrawal Assessment; HEI, Health Eating Index; kcal, 
kilocalorie; MADRS, Montgomery Asberg Depression Rating Scale; 
OCDS, Obsessive Compulsive Drinking Scale; PACS, Penn Alcohol 
Craving Scale; PSQI, Pittsburg Sleep Quality Index.

TA B L E  1  (Continued)
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unique taxa and 12 unique GBMs (Figure 2D). See Table S3 for the 
results of all bacterial and GBM correlations performed.

Clinical phenotype relationships with brain 
morphometry and microbiome-associated features

Brain morphometry regions were correlated with clinical symp-
tom phenotypes, and insula surface area was positively associated 
with alcohol withdrawal severity scores (r = 0.60, q = 0.107; Table 2; 
Figures S5 and S6H). Cortical thickness of the ACC was moderately 
negatively associated with both depression (r = −0.48, q = 0.485, 
Figure S7C) and anxiety (r = −0.46, q = 0.449; Figure S7F), but nei-
ther reached statistical significance. Amygdala and hippocampus 
morphometry were not associated with clinical symptom severity in 
this study cohort (Figure S5, Table S4).

Clinical symptom scores were correlated with alpha diver-
sity metrics to investigate any associations in overall gut microbial 

diversity with clinical phenotypes of patients with AUD and none 
were significantly correlated (Figure 3A, Table S5). When individual 
taxa were assessed with clinical phenotypes, there were 18 taxa 
that had moderate associations with alcohol-associated clinical 
symptoms that were significant before FDR correction (p < 0.05), in-
cluding five classified to the genus Blautia, but Blautia hansenii abun-
dance and subjective depression severity was the only relationship 
that was statistically significant after multiple comparisons correc-
tion (r = 0.74, q = 0.099; Figure 3B, Table S3). When GBM pathway 
relative abundance was correlated against clinical symptom severity, 
the abundance of several GBM pathways was positively associated 
with anxiety (Figure 3C). GBM pathways positively correlated with 
anxiety severity included Dopamine degradation (r = 0.54, q = 0.218), 
GABA synthesis I and II (r = 0.54, q = 0.218; r = 0.53, q = 0.218, re-
spectively), Histamine degradation (r = 0.54, q = 0.218), Propionate 
degradation I (r = 0.54, q = 0.218), and Nitric oxide degradation I 
(r = 0.49, q = 0.271), however, none of these correlations were statis-
tically significant (Table S3).

F I G U R E  2  Gut microbiome community characteristics of study cohort. (A) Average relative abundance of the top 100 most abundant gut 
microbiome taxa at the phylum level. (B) Sankey diagram displaying the composition and lineage at the phylum, family, and genus level for 
the top 100 taxa with the total count at each level. (C) Average representation of GBMs identified (% of total) from gut microbiome samples. 
(D) Pearson correlation coefficient (r) dot plot representing relationships between GBMs and the top 100 taxa in gut microbiome samples. 
Before FDR correction, a total of 261 pairs of taxa and GBM associations were found to be significant, which consisted of 76 unique taxa 
and 38 GBMs (Table S3). Several Roseburia species were negatively associated with 17-beta-Estradiol degradation, while the Glutamate 
degradation II pathway was positively associated with multiple taxa including two Blautia species (Blautia caecimuris and Blautia hansenii). 
GBM-taxa pair associations shown are those that were significant at q < .20 after FDR correction (representing 25 unique taxa and 12 unique 
GBMs). Heatmap indicates correlation coefficient. Blautia Unclassified# = Blautia Unclassified MSJ 36, Blautia Unclassified Marseille#a = Blautia 
Unclassified Marseille P3201T, Roseburia Unclassified# = Roseburia Unclassified CLA AA H209, Roseburia Unclassified#c = Roseburia Unclassified 
831b, Roseburia Unclassified#b = Roseburia Unclassified BX1005, Roseburia Unclassified#a = Roseburia Unclassified CLA AA H204, Subdoligranulum 
Unclassified# = Subdoligranulum Unclassified APC924 74.

TA B L E  2  Brain region of interest and clinical symptom correlations.

Brain ROI

Withdrawal Anxiety Depression Craving for alcohol Sleep quality

r p q r p q r p q r p q r p q

Volume

ACC 0.13 0.63 0.72 −0.39 0.14 0.45 −0.28 0.30 0.79 −0.21 0.43 0.69 0.23 0.44 0.88

Amygdala 0.32 0.22 0.35 −0.04 0.88 0.95 0.12 0.67 0.83 −0.45 0.08 0.67 0.04 0.88 0.88

Hippocampus −0.10 0.73 0.73 −0.18 0.52 0.90 0.07 0.81 0.83 −0.27 0.30 0.69 0.40 0.16 0.74

Insula 0.34 0.20 0.35 −0.09 0.75 0.95 −0.21 0.44 0.83 −0.32 0.23 0.69 −0.21 0.48 0.88

Surface area

ACC 0.36 0.17 0.35 −0.02 0.95 0.95 0.11 0.67 0.83 −0.14 0.62 0.79 0.38 0.18 0.74

Insula 0.60 0.01* 0.11 0.16 0.56 0.90 −0.06 0.83 0.83 −0.07 0.79 0.79 0.09 0.76 0.88

Cortical thickness

ACC −0.41 0.11 0.35 −0.46 0.07 0.45 −0.48 0.06 0.48 0.24 0.37 0.69 −0.06 0.83 0.88

Insula −0.30 0.27 0.36 −0.36 0.17 0.45 −0.35 0.18 0.73 0.07 0.79 0.79 −0.06 0.76 0.88

Note: Withdrawal was evaluated by the average of the max CIWA scores for days 1–4 of treatment, Anxiety was evaluated using the BSA, Depression 
was evaluated using the MADRS, Craving was evaluated using the PACS, and sleep quality was evaluated using the PSQI. Pearson correlation 
coefficients (r) reported. *p < 0.05, **q < 0.05.
Abbreviation: ACC, anterior cingulate cortex.
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Brain morphometry and microbiome comparisons: 
Amygdala volume associated with multiple gut 
microbiome biomarkers

When morphometry of brain ROIs and alpha diversity metrics 
(i.e., Shannon Index, Inverse Simpson, and Chao1) were compared, 
amygdala volume was positively associated with Shannon Index 
(r = 0.53, q = 0.147; Figure 4A, Figure S8A), while ACC cortical thick-
ness was negatively associated with Shannon Index (r = −0.53, 
q = 0.147; Figure  4A, Figure  S8B). Similar relationships were ob-
served between Chao1 and both ACC cortical thickness and amyg-
dala volume (r = −0.47, q = 0.274; r = 0.49, q = 0.274, respectively), but 

these relationships did not reach statistical significance (Figure 4A, 
Table  S6). Of the brain morphometric values correlated with the 
relative abundance of individual taxa, the amygdala was the sole ROI 
that had statistically significant associations (Figure  4B, Table  S3). 
The bacterial taxa significantly correlated with amygdala volume 
included negative associations with Anaerostipes hadrus (r = −0.64, 
q = 0.123), Dorea formicigenerans (r = −0.66, q = 0.105), Blautia obeum 
(r = −0.67, q = 0.105), Blautia (r = −0.58, q = 0.176), Ruminococcus 
(r = −0.72, q = 0.058), and Eubacteriales (r = −0.60, q = 0.168), and 
positive associations with Bacteroides uniformis (r = 0.72, q = 0.058), 
Phocaeicola dorei (r = 0.61, q = 0.168), Phocaeicola vulgatus (r = 0.72, 
q = 0.058), and Bacteroidaceae (r = 0.57, q = 0.198). GBMs also were 

F I G U R E  3  Gut microbiome taxonomic and functional associations with clinical phenotype. (A) Pearson correlation coefficient (r) dot 
plot of alpha diversity metrics with clinical symptom scores. (B) Pearson correlation coefficient (r) dot plot of bacterial taxa abundance 
with clinical symptom scores. Blautia Unclassified# = Blautia Unclassified MSJ, Faecalibacillus Unclassified# = Faecalibacillus Unclassified H12, 
Faecalibacillus Unclassified#a = Faecalibacillus Unclassified MSK20. (C) Pearson correlation coefficient (r) dot plot of GBM pathway abundance 
with clinical symptom scores. For all plots, the heatmap indicates the correlation coefficient. All dots on the plot represent unadjusted 
p < 0.05, except for panel A where all comparisons are shown. Boxes indicate statistical significance of FDR q < 0.20.

F I G U R E  4  Gut Microbiome Taxonomic and Functional Associations with Brain ROIs. ACC, anterior cingulate cortex; InvSimpson, Inverse 
Simpson. (A) Pearson correlation coefficient (r) dot plot of alpha diversity metrics with brain ROIs. (B) Pearson correlation coefficient (r) dot 
plot of taxa abundance with brain ROIs. Blautia Unclassified# = Blautia Unclassified DFI 4 84, Roseburia Unclassified# = Roseburia Unclassified 
CLA AA H204. (C) Pearson correlation coefficient (r) dot plot of GBM pathway abundance with brain ROIs. For all plots, the heatmap 
indicates the correlation coefficient. All dots on the plot represent unadjusted p < 0.05, except for panel A where all comparisons are shown. 
Boxes indicate statistical significance of FDR q < 0.20.
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correlated with brain ROI measures and a similar predominance of 
amygdala morphometry associations occurred, with seven GBM 
pathways demonstrating moderate GBM-amygdala volume asso-
ciations (Figure  4C). Although not statistically significant, positive 
associations between GBMs and amygdala volume were seen with 
the Butyrate synthesis I (r = 0.57, q = 0.247) and Glutamate synthe-
sis I (r = 0.51, q = 0.247) pathways, while negative GBM associations 
with amygdala volume included Dopamine degradation (r = −0.53, 
q = 0.247), GABA synthesis I (r = −0.54, q = 0.247), GABA synthesis 
II (r = −0.51, q = 0.247), Histamine degradation (r = −0.53, q = 0.247), 
and Propionate degradation I (r = −0.53, q = 0.247; Table S3).

DISCUSSION

AUD is an incredibly complex disorder with neurologic (Carbia 
et al., 2021; Koob & Colrain, 2020) and gastrointestinal (Bishehsari 
et al., 2017) pathology, which provides a multitude of potential gut-
brain signaling pathways. Shared withdrawal, sleep disturbance, 
craving, anxiety, and depressive symptoms that are frequently expe-
rienced by patients with AUD during detoxification from alcohol im-
pact both treatment efficacy and risk for relapse (Ames et al., 2020; 
Wallen et  al.,  2019). Although this exploratory research can only 
provide preliminary evidence of possible gut–brain signaling mecha-
nisms in AUD, we discovered clinically and statistically significant 
microbiome-associated features that had shared associations with 
brain morphometry and clinical symptoms that can be used to in-
form future hypothesis-driven prospective research.

Amygdala volume is associated with several microbial 
features in patients with AUD

The amygdala had the strongest and most consistent relationships 
with the gut microbiome in this study, having significant associations 
with the abundance of several taxa in addition to gut microbiome 
community measures (i.e., alpha diversity). We were specifically in-
terested in amygdala volume as a brain ROI in this research due to 
previous morphometric variation associations with heavy alcohol 
use, AUD, and stress-associated disorders (Lautarescu et al., 2020; 
Senatorov et  al.,  2015). Amygdala volume was positively corre-
lated with alpha diversity metrics of microbial richness (Chao 1) 
and both richness and evenness (Shannon index), although Chao1 
associations with amygdala volume did not meet statistical signifi-
cance (p = 0.052). Ten taxa were significantly positively and nega-
tively associated with amygdala volume. The positively associated 
taxa with amygdala volume fell under the Bacteroidaceae family, 
while the negatively associated taxa (Dorea formicigenerans, Blautia 
obeum, and LKT Blautia) were classified to the same genera previ-
ously implicated with increased intestinal permeability in individuals 
with AUD (Leclercq, Matamoros, et  al.,  2014). Increased intestinal 
permeability facilitates translocation of bacterial byproducts (such 
as endotoxin) into the systemic circulation (Bishehsari et al., 2017; 

Leclercq et al., 2012), and has been shown to be associated with el-
evated markers of inflammation and end-organ disease in patients 
with AUD, irrespective of the amount of alcohol consumed prior to 
inpatient treatment (Leclercq, Matamoros, et al., 2014).

Several GBMs were also found to be significantly associated with 
amygdala volume, such as negative associations with GABA synthesis 
pathways and positive associations with glutamate synthesis path-
ways, which are involved with the modulation of excitatory signaling 
involved in symptoms such as withdrawal and anxiety. These asso-
ciations suggest that microbiome-associated signaling pathology to 
the amygdala may involve a disruption in the balance of functional 
genes involving inhibitory and excitatory neurotransmitter signaling 
pathways. Whether or not the increase or decrease in the compo-
nents of these GBM pathways in fecal samples leads to a measurable 
change in gut-brain signaling, or if the increase or decrease in GBM 
abundance is a cause or a compensatory mechanism from the pa-
thology leading to increased symptom severity is not known at this 
time. Continued research with larger sample sizes in patients with 
and without AUD will build on these preliminary findings.

Nevertheless, there is well-described research linking the struc-
ture, function, and development of the amygdala to the gut mi-
crobiome in rodent and human studies. In germ-free mice lacking 
a gut microbiome, several altered characteristics of the amygdala 
have been reported including lower BDNF expression, higher vol-
umes, and hyperactivity of neuronal systems including synaptic and 
cholinergic transmission (Hoban et  al.,  2018; Stilling et  al.,  2015). 
In humans, probiotic supplementation with Bifidobacterium longum 
NCC3001 reduced both amygdala-associated negative emotional 
stimuli responses and subjective depression scores in subjects with 
irritable bowel disease (Pinto-Sanchez et al., 2017). Therefore, our 
findings contribute to the accumulating evidence supporting gut–
brain signaling pathways from the gut microbiome to the amygdala 
and provide early evidence of potential taxa-specific associations 
that may be investigated in future research of mechanisms underly-
ing microbiome-associated neuropathology in AUD.

Disparate brain and clinical feature associations with 
Blautia species suggest heterogeneous functions of 
Blautia-associated taxa

Several Blautia taxa were associated with brain ROI morphometry, 
clinical symptom severity, and clinically relevant GBM pathways in 
this population of treatment-seeking subjects with AUD. For exam-
ple, in addition to the previously described relationships between 
Blautia taxa and amygdala volume, Blautia Unclassified DFI 4 84 was 
negatively associated with both ACC and insular cortical thickness. 
The abundance of Blautia massiliensis was positively associated 
with both ACC volume and surface area, along with reductions in 
subjective sleep quality (as indicated by an increased PSQI score). 
Subjective reports of increased symptoms of depression were 
positively associated with Blautia hansenii and Blautia Unclassified 
Marseille P3201T abundance while craving scores were negatively 
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associated with Blautia faecis and Blautia Unclassified MSJ 36. It is 
important to note that not all reported associations remained signifi-
cant after FDR correction, but these shared relationships between 
Blautia taxa, brain morphometry, symptom measures, and functional 
microbiome data (i.e., GBMs) provide important preliminary infor-
mation supporting further discovery.

In the literature, Blautia taxa have been hypothesized to have 
multiple roles and relationships with human physiology, ranging 
from metabolic properties beneficial for human health to associa-
tion with clinical markers of disease (Leclercq et al., 2021; Leclercq, 
Matamoros, et  al.,  2014; Liu et  al.,  2021). Research annotating 
Blautia at the taxonomic level of genus and species has reported 
both positive and negative associations with sleep quality across 
measures of sleep efficiency, total sleep time, and subjective sleep 
quality (Smith et al., 2019). The connection of Blautia taxa to sleep 
in the literature supports our finding connecting Blautia massilien-
sis abundance to poor subjective sleep quality. As most currently 
available research has been performed using genus-level taxa, fu-
ture work with species-level data will clarify if the divergent rela-
tionships of sleep quality with Blautia taxa are species-specific or 
more dependent on patient phenotype and environmental condi-
tions. Blautia abundance has also been connected to heavy alco-
hol use and known complications of AUD in other research. For 
example, a recent binge drinking episode was associated with an 
increase in the abundance of Blautia wexlerae (Carbia et al., 2023), 
and the relative abundance of Blautia was positively associated 
with markers of intestinal permeability linked to increased in-
flammation and systemic complications (Leclercq, Matamoros, 
et al., 2014).

In microbiome niches such as the gut microbiome, different 
Blautia species may metabolize heterogenous metabolites or other 
mediators that signal to the brain in a manner that differentially 
impacts subjective anxiety, depression, sleep disruption, or crav-
ing depending on the environmental conditions and substrates. 
For example, until the isolation and classification of gram-negative 
Blautia massiliensis, the entirety of the genus Blautia was thought 
to be gram positive prompting a revised description of the genus 
(Durand et al., 2017). Several Blautia species including Blautia mas-
siliensis (associated with poor sleep quality) were positively asso-
ciated with an increased abundance of the tryptophan synthesis 
pathway. Other Blautia species had incongruent associations with 
GBM pathways. For example, Blautia hansenii was positively asso-
ciated with quinolinic acid degradation, while Blautia Unclassified 
MSJ 36 was negatively associated with quinolinic acid degrada-
tion. Quinolinic acid, a neurotoxic byproduct of the kynurenine 
pathway associated with glutamate release and reactive oxygen 
species, is significantly elevated in treatment-seeking patients 
with AUD (Leclercq et al., 2021). We report positive associations 
between amygdala volume and ACC surface area with glutamate 
synthesis I in our patient cohort, suggesting a potential relation-
ship between Blautia species and byproducts of the kynurenine 
pathway that can be explored in future research. Importantly, 
the specific role of different Blautia species in human health and 

AUD-associated disease remains to be determined in future con-
firmatory and mechanistic research.

Additional putative gut–brain signaling associated 
bacteria: Phocaeicola dorei, Phocaeicola vulgatus, 
Escherichia coli, Prevotella copri, and Ruminococcus

Other bacteria that were relevant in this analysis due to collective 
associations across clinical phenotype, brain ROI, and GBM do-
mains included Phocaeicola dorei, Phocaeicola vulgatus, Escherichia 
coli, Prevotella copri, and Ruminococcus taxa. The abundance of 
Phocaeicola dorei and Phocaeicola vulgatus taxa were both nega-
tively associated with ACC average thickness and positively as-
sociated with the GBM pathway glutamate synthesis I. Increased 
glutamate synthesis in gut microbiome communities shows rel-
evance for alcohol-specific symptoms. For example, in our re-
search, higher withdrawal scores were associated with increased 
glutamate synthesis, while another study reported associations 
between increased fecal GBM glutamate synthesis pathways 
and higher craving scores in young adult binge drinkers (Carbia 
et al., 2023). Phocaeicola dorei and Phocaeicola vulgatus may have 
possible roles in bile acid deconjugation, as levels of these taxa 
have been correlated with unconjugated bile acids in fecal micro-
biome transplant studies and have been shown to produce bile salt 
hydrolase using in vitro experiments (Bustamante et al., 2022; Xu 
et  al.,  2023). These bacteria have been linked to the production 
of short-chain fatty acids (Ó Cuív et al., 2017), and we observed 
moderate positive associations between Phocaeicola vulgatus and 
the butyrate synthesis I pathway, and negative associations oc-
curred between Phocaeicola dorei and propionate Degradation I. 
Increased bile acid excretion and short chain fatty acid synthesis 
are considered positive gut–brain signaling mechanisms through 
a reduction of inflammation (Xu et  al.,  2023), parasympathetic 
nervous system activation (Cryan et al., 2019), and modulation of 
microglia function (Erny et al., 2015). Therefore, further investiga-
tion into the directionality and clinical implications of physiologic 
Phocaeicola taxa associations, such as increased bile acid excretion 
and short-chain fatty acid synthesis, versus pathologic pathways 
like increased glutamate synthesis may inform the role of these 
taxa in brain signaling and the associated mechanisms.

The abundance of Escherichia coli in gut microbiome samples 
was associated with brain ROI morphometry, clinical symptom se-
verity, and GBM abundance in our study cohort. Escherichia coli 
was negatively associated with amygdala volume and was posi-
tively associated with craving for alcohol. Escherichia coli also had 
significant associations with several GBM pathways including a 
positive association with dopamine degradation, histamine degra-
dation, GABA synthesis I and II, and propionate degradation I, and 
a negative association with S-Adenosylmethionine (SAM) synthe-
sis. Shared negative associations between amygdala volume and 
both Escherichia coli and S-Adenosylmethionine (SAM) synthesis, 
along with the known associations of Escherichia coli to mechanisms 
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involving inflammation and maintenance of the gut barrier (Amin 
et al., 2009) and S-Adenosylmethionine (SAM) synthesis to positive 
impacts on depressive symptoms and hepatic protection suggest 
these microbiome-associated features may be involved in signal-
ing pathways moderating symptom severity in patients with AUD 
(Cederbaum, 2010).

An increased abundance of Prevotella copri in gut microbiome 
samples was associated with lower subjective symptom burden in-
cluding anxiety, depression, and sleep quality scores. Despite con-
sistent associations with Prevotella copri abundance and clinical 
symptom severity, Prevotella copri was not significantly associated 
with brain ROI or GBM biomarkers. Interestingly, the association 
of Prevotella copri abundance with markers of health like glucose 
response have been conflicting in the literature (Kovatcheva-
Datchary et  al.,  2015; Pedersen et  al.,  2016), and an increased 
abundance of this taxon has also been associated with markers 
of end-organ disease like liver fibrosis (Dong et al., 2020). As the 
abundance of Prevotella in the gut microbiome has been demon-
strated to be strongly influenced by lifestyle choices such as al-
cohol intake or diet (De Filippis et  al.,  2016; Kwan et  al.,  2022), 
examining interactions between food and alcohol intake in the 
analysis of clinical phenotype and Prevotella associations may 
inform the functional role of this bacteria in patients with AUD. 
Finally, the abundance of Ruminococcus callidus was negatively 
associated with PSQI scores indicating a positive relationship 
between abundance of this taxa and improved subjective sleep 
quality. In other research, patients with AUD who had increased 
intestinal permeability had a significant decrease in Ruminococcus 
taxa (Leclercq, Matamoros, et  al.,  2014), suggesting these taxa 
may be associated with both improved gastrointestinal barrier 
function and AUD-associated symptom burden. This preliminary 
identification of bacterial taxa associated with gut–brain signaling 
outcomes (i.e., brain morphometry, neuropsychologic symptoms) 
can potentially inform important study design considerations in-
cluding sequencing strategy and targeted metabolites involved in 
GBM pathways and bacterial utilization.

While this study provides a novel exploration of brain morpho-
metrical regions of interest and the gut microbiome, it is not without 
limitations. This study is based on secondary analysis and rese-
quencing of fecal samples that were collected during the primary 
microbiome protocol, and the sample size is constrained by the num-
ber of patients who had structural MRI images obtained in addition 
to fecal samples for gut microbiome analysis. This population of in-
dividuals with AUD was heterogeneous and may not be completely 
representative of a general population of individuals with severe 
AUD. Variables such as the amount of alcohol consumed prior to 
treatment and demographics are not evenly distributed across this 
set of patients, and the study cohort did not include control par-
ticipants. We also understand that having subjects scanned on two 
different scanners might have limited the effect size of detected 
structural differences. However, using the data from both scanners 
expands the generalizability of this model which should be exam-
ined with a larger sample size. Although we use GBMs that provide 

more insight into gut-brain pathways, the concept of GBMs is still 
quite new, and therefore, comparisons to other studies using GBMs 
was limited to the small number of other studies that included GBMs 
as microbiome-associated biomarkers. Finally, the small sample size 
prevented the use of advanced statistical modeling or the ability to 
control for covariates, and bivariate comparisons were used for all 
statistics. Replication of these measures in study cohorts with larger 
sample sizes and control participants will be necessary to confirm 
if the microbiome-associated biomarkers associated with MRI and 
clinical features found in this analysis can be replicated while con-
trolling for patient-specific factors and providing meaningful clinical 
inference. Despite the limitations, this study provides a framework 
to guide future researchers who aim to integrate multimodal fea-
tures to perform biobehavioral investigations of mechanisms un-
derlying gut–brain signaling and clinical phenotype in patients with 
AUD.

Using structural MRI and gut microbiome features, along with 
clinical symptom data relevant to AUD, we identified clinically and 
statistically significant features that can be used to understand 
altered gut-brain signaling pathways resulting from heavy alcohol 
use. Although there have been other studies focused on associa-
tions between structural MRI brain ROI and gut microbiome data 
in patients with neuropsychiatric disorders, to our knowledge, this 
is the first study integrating MRI, microbiome, and clinical features 
in patients with AUD. Furthermore, capitalizing on a methodology 
that incorporates multiple components of a neuroactive pathway 
(Valles-Colomer et al., 2019), the use of GBM pathways as opposed 
to quantifying individual functional genes enables increased con-
fidence when drawing inferences from this preliminary functional 
microbiome data. Although we do not yet understand whether 
pathologic gut–brain signaling precedes heavy alcohol use and 
increases the risk for AUD, or if these signaling processes are in 
response to alcohol-associated pathology, we identify prelimi-
nary taxonomic and functional microbiome features associated 
with patient phenotype that can be used to inform mechanistic 
targets and future interventional research. This work combining 
results from both MRI and the microbiome in patients with AUD 
provides limited preliminary gut–brain signaling data, however, 
these results will help support future longitudinal analyses that 
may provide a more substantive road map for meaningful clinical 
inferences. Our hope is the results generated from this research 
will produce pre-clinical and translational research hypotheses to 
facilitate continued knowledge and improved health outcomes in 
patients with AUD.
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